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Abstract

Nowadays, test cases may correspond to elaborate pro-
grams. It is therefore sensible to try to specify test cases
in order to get a more abstract view of these. This paper
explores the notion of test purpose as a way to specify a
set of test cases. It shows how test purposes are exploited
today by several tools that automate the generation of test
cases. It presents the major relations that link test purposes,
test cases and reference specification. It also explores the
similarities and differences between the specification of test
cases, and the specification of programs. This opens per-
spectives for the synthesis and the verification of test cases,
and for other activities like test case retrieval.

1. Introduction

Verification and Validation (V&V) activities remain a
costly and time-consuming part of software development
activities. In many projects, it can take up to 40% of the de-
velopment time. It is therefore interesting to try to automate
these activities, and in particular testing which remains the
most commonly used technique for V&V.

Automating the testing process can correspond to three
activities: test case generation, test execution, and test
checking. Automating test execution means to have a tool
that applies a set of test cases to a program. Popular
tools like JUnit (junit.org) correspond to this category. Test
checking corresponds to the automation of the oracle, i.e.
the evaluation of the test results. A third category of testing
tools corresponds to the automatic generation of test cases.
Starting from a reference (specification or program), such
tools produce one or several test cases, which are expected
to be pertinent for the application. Several means (test pur-
poses, fault models, coverage,. . . ) are adopted to guide this
generation process.

The complexity of test cases should not be underestimated.
A simplistic view of test cases reduces these to a pair of in-

put/output values. This view may be adequate when test-
ing a library of deterministic functions, e.g. a test case for
square root is defined by the pair (4,2). But a wide range
of software applications don’t correspond to this paradigm:
procedures can be non-deterministically specified, or soft-
ware systems can encapsulate a state which impacts on the
outputs of procedure calls. Moreover, procedures cannot
necessarily be called in isolation and running a test case
may require (a) to deploy an initial testing infrastructure
(i.e. a set of testing processes that will collaborate during
testing), (b) to execute a given preamble before being able
to call the procedure, and (c) to get the system under test
into a safe state after the test has been performed (postam-
ble). For example, let us consider the test of a presentation
component in a n-tier architecture. This component handles
the interaction between a user and application components.
In order to test this component, we need to deploy a set of
application components or to fake them using stubs. The
user (or a robot that plays his role) and the application com-
ponents correspond to the testing infrastructure. Before the
user can access to the functions of the application, some au-
thentication procedure may be necessary. It is only at that
time that the user will be able to perform his tests. Finally,
the postamble may include some deconnection procedure.

Therefore, test cases can correspond to elaborate exe-
cutable programs. In the telecom industry, TTCN [19] is
a standard language for expressing test cases. It includes
classical elements of programming languages like C: data
types, variables, control structures, procedures.

The specification of test cases is a natural counter-part
to the specification of programs. Specification provides a
higher level of abstraction to the developer and it may be
sensible to capture the essence of a test in a short and ab-
stract description, before starting its design. Test purposes
play such a role. In conformance testing, the notion of test
purpose has been defined by several standardisation organi-
sations [18] as:

Test purpose: description of a precise goal of the test case,
in terms of exercising a particular execution path or verify-
ing the compliance with a specific requirement.

2



For example, a standard like [9], uses test purposes as a
structuring element in the test suite structure. In that docu-
ment, test purposes establish a link between test cases and
conformance requirements. They are written in natural lan-
guage and describe high level interactions between the im-
plementation under test and the tester.

A more formal notion of test purpose has been adopted
by several research groups which propose test synthesis
tools: SAMSTAG [13], TGV [21], and TorX [4]. These
tools correspond to the automatic generation of conformity
tests for reactive systems. Fig. 1 shows how one of these
tools (TGV) takes a test purpose and a dynamic specifica-
tion as inputs and generates a test case as output.

This paper first introduces the notion of formally defined
test purposes and illustrates it in the context of a test synthe-
sis tool (Sect. 2). Section 3 explores the relations that exist
in black-box testing between test purposes, test cases and
the specification of the system under test. Section 4 com-
pares test purposes to test specifications, especially from the
tool support point of view. Section 5 shows that test pur-
poses are one of the possible ways to specify a set of test
cases and section 6 draws the conclusions of this paper.
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Figure 1. The TGV tool

2. Test purposes in TGV

In this section, we use TGV [21] to illustrate the notion
of test purpose and how it is used in a test synthesis tool.
TGV has been developed jointly by the Vérimag laboratory
and the PAMPA team at IRISA. Figure 1 shows the inputs
and output of the TGV tool. Starting from a dynamic spec-
ification of the system under test, and given a test purpose,
TGV generates one of the corresponding test cases. The

dynamic specification is a labeled transition system that can
be extracted from classical UML diagrams using the UM-
LAUT tool [17]. UMLAUT and TGV have been success-
fully applied to an industrial application in order to generate
thousands of test cases [6]. For clarity sake, and because
TGV is not the subject of this paper, we give a simplified
presentation of the TGV tool.

Let us now consider Fig. 1 into more detail. In black-
box testing, people want to compare a given implementa-
tion to a reference specification. In TGV, test cases are con-
structed from a dynamic specification. These test cases are
then applied to the implementation under test. If this imple-
mentation behaves as expected in the description of the test
case, the test succeeds. Otherwise, the test usually reveals
a non-conformity. In some cases, an inconclusive verdict is
issued which means that the implementation under test did
perform as specified but did not fulfill its purpose, due to
non-determinism in the specification.

The specification of the system under test is given by a
labeled transition system (LTS). The dynamic specification
in Fig. 1 gives the LTS specification of a coffee machine.
Messages starting with “?” correspond to inputs to the cof-
fee machine, and those starting with “!” to outputs.

� The user has to input two coins of 1 or one coin of 2.
� He chooses between coffee, tea, or sugar. If he chooses

sugar, he still has to choose between coffee and tea.
� The machine serves the beverage.
� The diagram loops: users can buy several beverages.1

Test cases correspond to finite paths in this diagram. Since
this coffee machine loops forever, there exists an infinite
number of test cases. Exhaustive testing of the machine is
therefore a never ending task. Selecting a finite set of test
cases falls out of the scope of this paper; it requires to make
some test hypotheses [11].

Dynamic specifications of reactive systems can become
quite complex, and writing test cases which conform to the
specification is not a trivial task. Therefore it is interesting
to have tools, such as TGV, which generate test cases from
the specification.

2.1. Test purposes as a specification of test cases

Test purposes are abstractions of the test cases. As a first
approximation, we can see them as incomplete sequences
of events. The TGV tool takes a test purpose as input and
generates one of the possible test cases that complete the
sequence and conform to the dynamic specification.

Fig. 1 gives a simple test purpose for the coffee machine
(TP1). The incomplete sequence features a single message�������	���

. It corresponds to any test case which eventually

1We assume that the machine is refilled regularly so that it can operate
forever. These maintenance operations could be added to the diagram.
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serves coffee. Once coffee has been served, we reach an
“accept” state which means that the test purpose is fulfilled.

Figure 2 shows several test cases that correspond to this
test objective2. Test case (TC1a) is the shortest test case
which leads to the delivery of coffee. Test case (TC1b) is
a partial path to serve sugared coffee; the test succeeds be-
fore the sugar is added to the coffee. Test case (TC1c) first
serves tea before coffee. Actually, there is an infinite set of
test cases which correspond to this test purpose, since it is
possible to deliver an arbitrary number of teas before deliv-
ering the first coffee. TGV explores the LTS specification
and returns one of the corresponding test cases.

At this stage, it must be noted that abstract test purposes
have a number of benefits over fully detailed test cases:

� Test purposes are aimed at capturing the essence of the
test case. Here, the important element is the delivery
of coffee and not the amount of coins entered.

� Test purposes are shorter to state than test cases. The
test generator is in charge of completing the clerical
details of the sequence.

� Test purposes are more robust to evolutions of the dy-
namic specification than test cases. For example, our
specification states that

� ��������� is issued after
�������	���

.
If the specification evolves and modifies this sequence,
the test purpose will still be consistent with the speci-
fication and will allow to re-compute the test case.

2.2. Test purposes as a guidance for TGV

In practice, test purposes are not only considered as a
specification of the test cases. They may also take the be-
haviour of the synthesis algorithm into account in order to
control the behaviour of the test synthesis tool. There exist
two kinds of guidances: (1) selection of synthesized tests
and (2) reduction of combinatorial explosion. Let us now
detail these two ways of using test purposes.

Selection of test cases Fig. 2 shows that several test cases
correspond to a given test purpose. Actually, the software
engineer may only be interested in some elements of this
set (maybe a single element). Fig. 3 shows refined versions
of test purpose TP1 that are aimed to select a reduced set
of test cases. Fig. 3(a) expresses that the specified test case
should not include a

� �
	 � message. This will eliminate TC1c
and any other test case that first serves tea before serving
coffee. Fig. 3(b) further specifies the test purpose to reject
any request for sugar and impose that the test case includes
a �
���
��������� message. This uniquely defines test case TC1a
and rejects any other sequence where TC1a is not a prefix.

2Actually, test cases should be the mirror of the specification, i.e. inputs
of the specification become outputs of the test case and vice-versa (e.g.
?coin(2) becomes !coin(2) in the test case). To avoid confusion, mirroring
is not performed here, and test cases are simply paths of the specification.
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?sugar

!tea
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Figure 2. Test cases
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Figure 3. Refined versions of the test purpose

The test purposes of Fig. 3 correspond thus to an incre-
mental process where the user constrains the test purpose
until it corresponds to the restricted set of test cases he in-
tends to synthesize. This corresponds to a classical incre-
mental development of specifications.

In practice, figuring out the set of test cases specified
by the test purpose is not an easy task. Users often rely
on the capabilities of the tool to compute and display this
set. A tool like TGV is used to produce one element of this
set from the test purpose. This test case is the result of a
combination of the test purpose and the synthesis algorithm,
which chooses one element from this set. If the algorithm is
deterministic, i.e. always returns the same element of the set
for a given test purpose and specification, there is a definite
risk that the user stops the iterative process as soon as the
tool returns the test case he intended. Of course, this does
not guarantee that the test case is the only possible solution.
Stopping this incremental process too early may lead to un-
derspecify the test purpose. The designers of TGV seem to
be aware of this problem and propose two solutions. On the
one hand, the synthesis algorithm includes some random
choice capabilities which make it non-deterministic; on the
other hand, an alternate mode allows the synthesis of the
automaton which corresponds to the set of all solutions.
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Reduction of combinatorial explosion Synthesizing a test
case from the test purpose corresponds to an exploration
of the dynamic specification of the system under test. In
reactive systems, such a specification often corresponds to
an infinite number of possible behaviours. And searching
through the space of possible test cases is a process that is
subject to combinatorial explosion.

Most synthesis tools take therefore advantage of the test
purpose to guide their search. For example, instead of TP1,
let us use test purpose (a) of Fig. 4. After having produced a
sequence of coins (e.g. �
���
��������� ), the tool finds a branch in
the dynamic specification of Fig. 1 which matches � �����	���

.
This branch will be explored first. This new version of TP1
will speed up the production of the test case TC1a. But the
cost of this speed-up is to overspecify the test purpose, i.e.
add unnecessary information to the test purpose.

Fig. 4(b) shows a different test purpose, intended to pro-
duce sugared coffee. It starts with the same message as
TP1 ( � �����	���

), but then requires the emission of sugar. In
this case, using the first message to guide the search is a
misleading heuristic because the branch which starts with
� �����	���

does not lead to
� ��������� .

?coffee

!coffee

?coffee

!sugar

(a) (b)accept accept

Figure 4. Other test purposes

In summary, this section has shown that test purposes play
two roles in a test synthesis tool: (1) they provide an abstract
specification of the test case; (2) they guide the synthesis
tool. This second role requires the user to be aware of the
synthesis algorithm. This awareness may result in under-
or over-specification of the test purpose. It is interesting
to notice that similar discussions have already happened in
the field of executable software specifications, where exe-
cutability concerns like optimisation may lead developers
to overspecification [14].

3. Relations between test purposes, test cases
and specifications

In the context of software specification, programs are
linked to their specification by a refinement relation. If the
specification leaves implementation freedom to the devel-
oper, then several programs can be valid refinements of the
specification.

In the context of black-box testing, we can imagine a
similar relation between test cases and test purposes. Let us
introduce it as the following relation:

� 	 ������� � 	�� ��� 	 � ���
	�� �
where � is a test case and � is a test purpose. For example,
the test cases of Fig. 2 are weak refinements of test purpose
TP1 of Fig. 1. Although we did not yet define the semantics
of � 	 ������� � 	�� ��� 	 � , we can conjecture that TP1 itself is a
sequence of interactions and can be seen as a test case3 , and
that � 	 ������� � 	�� ��� 	 � ��
�����	�
������ is true. In the context of
our coffee machine, this test case would mean that we wait
until the machine spontaneously serves coffee!

Of course, such a test case is not satisfactory because it
does not take the specification of the coffee machine into
account. A quick look at this specification shows that the
machine does not spontaneously serve coffee. An imple-
mentation of the coffee machine that would fail such a test
case4 , would still be conform to the specification. There-
fore we need a third element in our refinement relation: the
specification of the system under test. We can introduce a
new relation: � 	�� ��� 	 � ���
	���	����
where S is a specification. Actually, Fig. 1 shows an exam-
ple of such a triplet.

The semantics of � 	�� ��� 	 � depends on the languages
used to express � , � and � . In the context of TGV, these
three elements are expressed as labeled transition systems
(LTS)5, and � is one of the paths of the synchronous prod-
uct of � and � . When � , � , and � are expressed in other
languages, it is necessary to define an appropriate seman-
tics for refinement. For example, in the context of a model-
based approach such as B [1] the following definition of
test cases, test purposes and the test refinement relation
( � 	�� ��� 	 ��� ) could be adopted6:

� � is expressed as a B abstract machine,
� � and � are expressed as sequences of operations.
� � is a refinement of � if

(1) � is an incomplete version of � , i.e. all operations
of sequence � appear in � and in the same order,
(2) the sequence of operations in � is a valid sequential
composition of the operations of � , i.e. it satisfies the
B proof obligations for sequential composition.

For example, let us consider a simple abstract machine
which specifies a stack of integers with the classical opera-

3Actually, a mirror transformation should be performed.
4If you wait long enough to make sure it will not spontaneously serve

coffee!
5TGV is slightly more complex and uses IOLTS which distinguish be-

tween visible interactions and internal actions.
6This simplistic proposal is just given for illustration; a more realistic

proposal would define test cases not only as sequences of operations, but
as complex programs including loops and alternatives.
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tions ��� � � , � � ��� ��� � , � � � ,
� � � , where � � � and

� � � have the
usual precondition that the stack may not be empty. A test
objective could be the sequence � � � ��� and a corresponding
test case could be � ��� � ��� � � ��� ��	�� � � � ��� .

Based on the semantics of � 	�� ��� 	 � , it is possible to give
a semantics to � 	 ������� � 	�� ��� 	 � .
� 	 ������� � 	�� ��� 	 � ���
	�� ��

��� � � � 	�� ��� 	 � ���
	���	����

which means that a test case is a weak refinement of a test
purpose if and only if it refines the test purpose for some
specification.

In the context of TGV, it is quite easy to check this weak
refinement relation: � is a LTS that accepts all transitions of
both the test purpose and the test case at any time. � itself
can provide such a LTS and the � 	 ������� � 	�� ��� 	 ������� rela-
tion can be checked from � 	�� ��� 	 ������� ���
	���	�� � 7. Unfor-
tunately, � 	 ������� � 	�� ��� 	 � ���
	�� ��

� � 	�� ��� 	 � ���
	���	�� �
is not a general law, because it requires both � and � to
be expressed in the same language (here LTS). In the B ex-
ample, � can easily be build as an abstract machine which
features all operations of the test case with

� �
� 	 as precon-
dition. Checking the � 	 ������� � 	�� ��� 	 � relation boils down
to verify the first property required by � 	�� ��� 	 � � : � is an
incomplete version of � .

Test Case
(C)

Test Purpose
(P)

Specification
(S)

refines

weakly_refines

consistentconforms

Figure 5. Relations between P, C and S

Fig. 5 shows that other relations can be deduced from� 	�� ��� 	 � . A conformity relation between test cases and a
specification is defined by abstracting from the test purpose:

���
� � � ��� � ���
	�����

��� � � � 	�� ��� 	 � ���
	���	����
Intuitively, the conformity relation8 checks that C is a valid
test case with respect to the specification. It is an essen-
tial property of test cases in black-box testing. Once again
it is relatively easy to give it a precise semantics based on
the semantics of � 	�� ��� 	 � . In the context of TGV, � can be
the test case itself and ���
� � � ��� ������� ���
	���� boils down to

7Internal actions should be removed from � .
8In conformance testing, conformity relations usually define a correct-

ness property which links the specification and the implementation under
test. Here we introduce a different notion that relates test cases and speci-
fication.

� 	�� ��� 	 ������� ���
	��
	���� . In the context of B, � can be any
partial sequence of � , which includes the empty sequence
and � itself. ���
� � � ��� ��� corresponds thus to the second
property expected to establish � 	�� ��� 	 � � : � is a valid se-
quential composition of operations of � .

Finally, a consistency relation between the test purpose
and the specification can also be deduced from Fig. 5:

���
� � � � �
	 � � ����	�����

��� � � � 	�� ��� 	 � ���
	���	����
Intuitively, given a specification, nothing guarantees that an
arbitrary test purpose may be refined into a test case. In
TGV, a weak consistency check is to make sure that the
set of labels present in the test purpose is included in the
alphabet of labels of the specification. Still, this is not suffi-
cient. Assessing the full consistency of a test purpose with a
specification generally requires to exhibit a test case which
refines � in the context of � . This corresponds to the test
case synthesis from � and � . Depending on the languages
used for � and � , this is not always decidable.

As a consequence, there is no systematic way to build
the ���
� � � � �
	 � � relation from � 	�� ��� 	 � . In fact, test case
� is more concrete than � and it is not possible to
find a canonical test case ��� that would always satisfy� 	�� ��� 	 � ������	���	���� .

At this stage, we have seen how � 	 ������� � 	�� ��� 	 � ,
���
� � � ��� � , and ���
� � � � �
	 � � are defined from � 	�� ��� 	 � . As
a result the following property holds:

� 	�� ��� 	 � ���
	���	������ ���
� � � � �
	 � � ����	���� (P0)� � � ���
� � � ��� � ���
	����� � � � 	 ������� � 	�� ��� 	 � ���
	�� �
It means that in Fig. 5, the binary relations can be deduced
from the ternary relation. We can also consider the re-
verse problem: can we deduce the ternary relation from a
combination of binary relations? In other words, given a
triplet ���
	���	���� , is it sufficient to check that its elements
are pairwise consistent, i.e. that ���
� � � ��� � , ���
� � � � �
	 � � ,
and � 	 ������� � 	�� ��� 	 � hold, to ensure the � 	�� ��� 	 � relation?
Unfortunately, this property is not guaranteed for an arbi-
trary � 	�� ��� 	 � relation. It relies on the actual semantics of
the instantiation of � 	�� ��� 	 � . In TGV, the presence of inter-
nal actions in the test purpose may invalidate this property.
In the example of B specifications given above, we have
seen that � 	�� ��� 	 ��� is defined from � 	 ������� � 	�� ��� 	 � � and
���
� � � ��� ��� ; and the following property holds:

���
� � � � �
	 � � � ����	���� (P1)� � � ���
� � � ��� ��� ���
	����� � � � 	 ������� � 	�� ��� 	 ��� ���
	�� ��� � 	�� ��� 	 ��� ���
	���	����
In this section, we have explored the relations that link test
cases, test purposes and specifications (Fig. 6). These rela-
tions are not specific to the TGV tool and can be instantiated
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to other contexts. We have sketched an adaptation of these
relations in the context of model-based specifications and
we believe that it can be adapted to other formal specifica-
tion approaches, especially those approaches which feature
several notions of refinements (e.g. process algebra [16]).

���
� � � � �
	 � � ����	���� 

��� � � � 	�� ��� 	 � ���
	���	����
� 	 ������� � 	�� ��� 	 � ���
	�� ��

��� � � � 	�� ��� 	 � ���
	���	����

���
� � � ��� � ���
	�����

��� � � � 	�� ��� 	 � ���
	���	����

Figure 6. Rules about test relations

4. A comparison with software specification

The major difference between test specification, i.e. test
purposes, and software specification is that a pair ( � , � ) is
usually considered in the context of � , the specification of
the system under test.

This explains why, although test cases may correspond
to actual “programs”, test purposes do not necessarily cor-
respond to classical program specifications. In the B ex-
ample, test purposes are incomplete sequences. In order to
understand that a test purpose like � � � ��� requires to put the
stack into a non-empty state, it is necessary to check the pre-
condition of � � � in the specification of the stack machine.

It is interesting to compare formal test purposes to for-
mal specifications, especially from the point of view of tool
support. Formal specifications are usually involved in three
kinds of activities:

� verification of the consistency of the specification;
� program synthesis;
� program verification.

These activities can be transposed to test purposes.

Verification of the consistency is often equivalent to show
the existence of at least one model that satisfies the spec-
ification. This verification can be performed by proving a
theorem of the form � � � � , where M is a model. It can
also be done by exhibiting such a model, i.e. constructing a
prototype of the specification.

This problem is similar to the verification of
���
� � � � �
	 � � ����	���� . As discussed earlier, consistency
is demonstrated by exhibiting a test case that refines both
� and � . When efficient synthesis tools are available to
generate test cases, consistency checking tools will only be
of interest if they are much faster than synthesis tools. For
example, if the synthesis of the test case requires several
hours of computing, it may be interesting to use tools that
assess partial consistency, like checking static semantics.

Program synthesis is one of the major themes of the Auto-
mated Software Engineering community. Test case synthe-
sis is its natural counterpart. It has motivated the develop-
ment of many tools, especially in the field of conformance
testing for reactive systems. In this area, specification lan-
guages allow the use of decidable procedures to synthesize
test cases. For example, TGV can be seen as a function��� � � � 	 � � ������� ����	���� which returns a test case, such that� 	�� ��� 	 � � ��� � � � 	 � � � ����	�����	���	���� provided that � is consis-
tent with � .

Program verification is the activity that assesses that a pro-
gram refines a specification. It is usually performed as a
proof activity. In the area of testing, this activity is trans-
posed into test case verification. Given a test case � , three
kinds of verifications can be performed.

� Checking the � 	�� ��� 	 � ���
	���	���� relation is the most
general verification. This verification makes sense if
the test case is not the result of a synthesis technique,
or if the test case has been generated from another test
purpose.

� Checking the ���
� � � ��� � ���
	���� relation assesses that
the test case can be used in a black-box testing process
for specification S.

� Checking the � 	 ������� � 	�� ��� 	 � ���
	�� � relation is inter-
esting if the following property holds:

� 	 ������� � 	�� ��� 	 � ���
	�� � (P2)� � � ���
� � � ��� � ���
	���� � � 	�� ��� 	 � ���
	���	����
This property is similar to property P1 of Sect. 3.

We believe that test case verification is a natural comple-
ment to test case synthesis and can be a source of inspiration
for several tools. Test case verification is often easier than
test case synthesis: it is easier to verify that a given path
exists in a specification than to generate this path by explor-
ing the specification. Moreover, this verification often goes
significantly faster than test case generation.

Let us assume that we have generated a large set of test
cases, i.e. a test suite, from a specification � . Several testing
activities can take advantage of cheap test case verification.

Evolution of specification S into � � would require to re-
generate the whole test suite. It is probably more efficient
to start with a verification activity (for each test case, verify
that � 	�� ��� 	 � ������	���� 	���� � still holds), and then to regenerate
the necessary test cases. Test cases which no longer verify
the � 	�� ��� 	 � relation may still verify ���
� � � ��� � ������	���� � . If
some tests fail this second verification than it reveals regres-
sion of the specification � � with respect to � .

Test case retrieval is another activity. Given a test suite
and a new test purpose � , find those tests which weakly
refine � . If the test cases satisfy the ���
� � � ��� � relation,
and if property P2 holds, the retrieved tests will satisfy the
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Figure 7. General structure of a synthesis tool

� 	�� ��� 	 � relation. Test case retrieval may be interesting in
several situations.

� The software engineer has a new test purpose � � and
suspects that there already exists a corresponding test
case in his test suite. Retrieving it will avoid an expen-
sive test synthesis.

� When test suites get large, it is interesting to minimize
their size. This can be done by finding out test cases
which correspond to several test purposes.

� One way to validate the exhaustivity of a test suite is
to check that it also refines additional (redundant) test
purposes extracted from the specification.

In summary, test case synthesis is the most obvious tool to
associate to test purposes, but other tools, based on test ver-
ification are a natural complement to test synthesis. The
VTS tool, associated to TGV, goes into that direction [20].

5. Extended notions of test purposes: test se-
lection criteria

Most test case synthesis tools follow the scheme of Fig.
7: given a reference model, and some criterion (also called
test requirements in [25], or test data selection criterion in
[29]), they produce a set of test cases. Exhaustive testing
with respect to the reference model is appealing but it is
generally impossible to perform it [11]. A lot of testing
heuristics have been proposed to guide and restrict the tool
to a finite set of test cases (a singleton in TGV). Tools differ-
entiate from each others by two main points: the reference
model from which the test are synthetized and the test se-
lection criteria. In white-box testing, the reference model
is the program source code. In black-box testing, the ref-
erence model is a specification of the system to test. This
section explores other test selection criteria than test pur-
poses. Actually, these criteria fall into two categories.

Criteria of the first category have been designed in order
to automate the testing process as much as possible.

Typical examples are coverage criteria: test data are gen-
erated in order to execute all instructions or transitions, con-
ditions, path. . . For instance, UMLTest [27, 26] uses four

coverage criteria on specifications expressed as UML state-
charts. Agatha [10] takes Statemate specifications as input.
Phact [15] analyses specifications expressed in Finite State
Machine formalism. InKa [12] exploits C code.

Another example of such criteria are fault models. Muta-
tion testing techniques use such types of criteria. Mutation
testing consists of building a test suite able to detect injected
faults in a program. The aim is to guarantee the absence of
a given kind of faults. Mutation techniques are usually used
with source code as reference model. For instance, Godzilla
is specialized for code written in Fortran [5, 25]. Mutation
testing has also been applied with specifications as refer-
ence model. For example, TESTGEN-SDL [3] has been
developed for SDL specifications.

Several tools apply analysis rules to generate test cases.
For example, when one want to test a “and” operator, one
should provide a test where both operands are true, both are
false, and one is true and the other false. To some extent,
this strategy is similar to the definition of a fault model.
They can be used on a specification (e.g. Casting [30]), or
code, or both (e.g. Gatel [22]).

The simplest test selection criterion is random testing.
It is quite efficient [8]. Several tools rely on it: Lutess [7]
and Lurette [28] for synchronous reactive system validation,
TorX [2] and Phact [15] for conformance testing.

A second category of criteria exploits user or domain
knowledge about the system under test. They are gener-
ally based on characteristics of the reference model. Several
strategies aim at using this knowledge.

Test purposes fall into this category. Besides TGV, other
tools rely on this paradigm. Samstag [13] takes as input a
SDL specification and a test purpose expressed in Message
Sequence Chart formalism (MSC). Test purposes can take
other forms: in Lutess, the user may guide test generation
with test purposes which describe important properties to
be tested or scenarios [7].

Operational profiles [24] are a second kind of applica-
tion dependent criteria. Here, the user provides a statistical
description of the input domain. Operational profiles can be
used to put more testing effort on important functionalities.
Lutess also implements a test generation method which ex-
ploits a statistical description of the input domain [7].

6. Conclusion

Test purposes have been defined in the area of confor-
mance testing as a way to specify test cases. Several test
case synthesis tools use a formal notion of test purpose as
test selection criterion. This paper has first illustrated the
notion of formally defined test purpose in the context of the
TGV tool. It has shown that test purposes are both used as a
specification for test cases and as a guidance for the tool. It
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has then defined four relations between test cases, test pur-
poses and the specification of the system under test. The� 	�� ��� 	 � relation plays a central role in this theory and the
other three relations can be defined from it. These relations
are not specific to a given tool and have been applied to two
examples: TGV and model-based specifications.

This research has been undertaken within a national
french project (RNTL COTE) which aims at defining a
test infrastructure for black-box testing, based on UML.
TGV provides one of the tools of this infrastructure, but the
project will also investigate other kinds of tools. The study
presented here shows that several tools can complement test
synthesis tools. The relations of section 3 provide a basis
for test verification and retrieval activities and section 4 has
presented several tools based on these relations. Section 4
has also used the similarities between test purposes and test
specification as an inspiration to identify or classify tools.

Another goal of the COTE project is to go behind the
area of reactive systems. As mentioned earlier, most test
synthesis tools based on test purposes are aimed at reactive
systems. The B example of section 3 tends to shows that
these ideas are not restricted to that particular application
domain and can also be applied to non reactive applications.

Finally, we have sketched a more general notion of test
selection criterion, which shows that test synthesis does not
necessarily rely on test purposes. Unlike test purposes, that
must be “consistent” with the specification, these criteria
are quite independent from the specification: fault models
can be related to the application domain, but coverage and
strategies don’t take it into account. This suggests an ap-
proach that mixes these selection criteria [23]. Instead of
generating test cases, test purposes are generated on the ba-
sis of coverage information, strategies or fault models.

As a conclusion, we believe that test specification, just
as software specification, offers a vast field of research, es-
pecially for the production of new and efficient tools.
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