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Abstract

Starting from a graphical data model (a subset of the
OMT object model), a skeleton of formal specification can
be generated and completed to express several constraints
and provide a precise formal data description. Then stan-
dard operations to modify instances of this data model can
be systematically specified. Since these operations may in-
validate the constraints, it is interesting to identify their pre-
conditions. In this paper, the Z-EVES theorem prover is
used to calculate and try to simplify the pre-conditions of
these operations. Then, the developer may identify a set of
conditions and use the prover to verify that they logically
imply the pre-condition.

1. Introduction

In the recent years, several research works have been
devoted to the integration of semi-formal specification lan-
guages (like OMT [19] or UML [10]) with formal specifi-
cation techniques. On the one hand, semi-formal languages
offer intuitive graphical notations that favour the commu-
nication within the specification team and with the cus-
tomer. They put emphasis on the structure of the specifi-
cation while details are often specified in natural language.
The semantics of these notations are not always precise.
This semantical imprecision and the informal character of
natural language may lead to ambiguities and misunder-
standings of such specifications. On the other hand, formal
methods offer mathematical notations for the specification
process. They have a precise semantics that removes ambi-
guities from specifications and offers a potential for reason-
ing and automation. Formal reasoning can be used to detect
inconsistencies in specifications and to guarantee the exis-
tence of an implementation. Tools can take advantage of the
formal semantics to support this reasoning process but also
to help synthesize efficient implementations or test suites.

The integration of semi-formal and formal techniques

aims at combining the advantages of both approaches, i.e.
to have intuitive structured notations with a precise seman-
tics that gets rid of ambiguities. Efforts have been made to
integrate structured methods such as SSADM [17] or data
flow diagrams[15, 18] with model-based languages like Z
[22], B [1] or VDM [11]. More recently, these techniques
have been used for object-oriented methods like Fusion [7],
OMT [5, 14] or UML [8].

From our experience in this domain, we have learned that

three benefits can be obtained from this integration:
Semantical awareness In OMT two alternate semantics can
be given to the aggregation construct. In [4], precise spec-
ifications have been stated for both, it is then the analyst’s
responsibility to be aware of the ambiguity of the construct
and to choose the appropriate meaning for his model.
Production of a formal specification Based on this precise
semantics, a translation scheme can be defined to produce a
skeleton of formal specification from the semi-formal dia-
grams. In [16], we have discussed such a translation schema
from a subset of OMT into Z. That technique is success-
fully taught since several years as an introduction to formal
methods for undergraduate. We are currently working on a
more complete translation that takes into account the object
oriented constructs of the method (aggregation, inheritance,
encapsulation) [4] and maps them into Object-Z [3] con-
structs.
Natural language complements The translation of the semi-
formal diagrams only provides a specification skeleton.
This skeleton must be completed with information that is
expressed in the informal natural language comments of the
diagrams. Proposing a translation schema helps thus iden-
tify the nature of these comments. In the coming years, we
expect to exploit this classification of comments to design a
set of forms that will organize the natural language comple-
ments of OMT diagrams.

Once a formal model has been developed with these
techniques, how can the resulting specification be ex-
ploited? On the one hand, one may expect that developing
a precise specification leads the analysts to a finer under-



standing of the problem; this was demonstrated by several
studies [6, 2]. Moreover, the specification provides an un-
ambiguous reference document for the subsequent stages of
the development. On the other hand, a formal specification
can be the starting point of a reasoning process to either ver-
ify properties or to construct a program. Often, tool support
is mandatory to guarantee the correctness of reasoning (e.g.
critical applications), to help manage the size and complex-
ity of the specification, or to cope with industry standards in
productivity. Nowadays, tool support is still insufficient to
match these requirements; formal methods are mainly used
in critical applications where they are required by certifica-
tion authorities, or in restricted application domains where
sufficient domain knowledge has been developed.

This paper reports on an attempt to use a theorem prover
[20] to exploit the formal specification in order to iden-
tify pre-conditions of systematically synthesized operation
specifications.

2. Overview of the approach

The proposed development approach starts from a semi-
formal specification of the data model of an information
system (Fig. 1).

1. The graphical model is edited and completed with nat-
ural language annotations that state several constraints
on the data (Sect. 3).

2. From this data model, commercial tools can generate a
prototype application with standard operations to mod-
ify objects and their links.

3. The data model is also the starting point of a translation
process which produces a formal specification skele-
ton (Sect. 4). Our process usually translates OMT dia-
grams into Object-Z. But here, in order to exploit a the-
orem prover, Z specifications were produced. There-
fore, only a subset of OMT is considered with classes
and relations.

4. The skeleton is completed with the formal expression
of the natural language constraints.

5. Standard operation specifications are generated from
the data model. They correspond to the operations of
the prototype (Sect. 5).

6. Since these standard operations do not take into ac-
count the constraints, it is important to evaluate under
which conditions these may be called safely. This is
performed by identifying the pre-conditions with the
help of the theorem prover (Sect. 6).

7. The pre-conditions provide information to complete
the prototype and turn it into a robust and efficient im-
plementation. This last step is discussed shortly in the
conclusion of the paper (Sect. 7).
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Figure 1. The proposed development process

3. Semi-formal specification

To illustrate the approach, we will use a variant of the
data model of the access control system presented in [16].
This model (Fig. 2) features two classes: persons and
groups. Each person has four attributes: his last and first
names, the set of his telephone numbers, and the number of
his magnetic access card. Each group is characterized by a
name (e.g. “Staff”) and a code (e.g. “ST”). The Members
relation links each person to one and only one group.

PERSON
GROUP
lastname Members
firstname 1,1 0. | groupcode
tel groupname
cardnb

Figure 2. A simple data model

This model does not express the full specification of the
application’s data. Five constraints complement this dia-
gram:;

1. The card number has 8 digits. The first 6 digits are the
actual number while the last 2 digits are a checksum
(remainder of the division of the number by 97).

2. Every person has at least one telephone number.

3. The telephone numbers of the members of a given
group have the same prefix.

4. The card number is a key for persons.

5. Both group code and name are keys for groups.



4. Translation of the data model into Z
4.1. Translating the classes

Systematic translation of this diagram into Z gives the
following skeleton for PERSON. This skeleton must be
completed with type information about the object’s at-
tributes and the constraints on each instance of the class.

__PERSON
lastname : . ..
firstname : . ..
tel : ...
cardnb : ...

The type for cardnb is a 8-digit number:
DIGIT8 == 0..99999999

Names and telephones are introduced as “given types”, a
more abstract type definition. Their specification is limited
to the name of the type. More details about the type are left
for subsequent refinements of the specification.

[NAME, TEL]
The PERSON schema may now be filled in:

__PERSON
lastname : NAME
firstname : NAME
tel : FTEL
cardnb : DIGITS

tel # 0
(cardnb div 100) mod 97 = cardnb mod 100

The tel attribute is multi-valuated, i.e. it corresponds to
a finite set of telephone numbers (IF TEL). Two constraints
have been expressed on the elements of this schema: the
first one expresses constraint 2 (the set of telephone num-
bers may not be empty), the second one is the checksum
constraint on cardnb (constraint 1).

PERSON can now be used as a type for variables or con-
stants. In [16], the following line introduces an undefined
element as a constant of type PERSON.

| undefperson : PERSON

Actually, in OMT or UML data models, the class cor-
responds to two notions: it introduces both the type of ob-
jects and an object “tank”, i.e. the collection of objects of
the class present in the information system. This notion,

that we define as the “extension” of the class, must also be
specified. The PersonExt schema introduces this extension
(Person as a finite set of PERSON). Upper and lower cases
are significant in Z, so we take advantage of this to distin-
guish the class type (PERSON) from its extension (Person).

__PersonExt
Person : IF PERSON

Vpl,p2: Person |pl #p2e
pl.cardnb # p2.cardnb
undefperson ¢ Person

The first constraint of this schema expresses that cardnb
is the key of persons (constraint 4), i.e. two different persons
have distinct card numbers; the second one expresses that
the extension does not include the undefined element. This
specification of PersonExt can be generated automatically
from the data model as soon as cardnb has been identified
as the key of the class.

The specification of the groups is produced similarly.
Here the first constraint expresses that both groupcode and
groupname are potential keys (constraint 5).

[GROUPCODE, GROUPNAME]

GROUP
|7groupcode : GROUPCODE

groupname : GROUPNAME

| undefgroup : GROUP

—GroupExt
Group : F GROUP

Vgl,g2:Group |gl # 92 e
gl.groupcode # g2.groupcode
A gl.groupname # g2.groupname
undefgroup ¢ Group

4.2. Translating the relation

The relation between persons and groups is translated as
a pair of functions: GroupOfPerson links a group to each
person and Members gives the members of a given group.
The first constraint on this schema expresses that the do-
main of GroupOfPerson is identical to set Person, i.e. every
element of the extension is member of a group. The sec-
ond constraint expresses that the range of this function is
a subset of the extension of groups, i.e. some groups may
have no members. The third constraint expresses Members
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Figure 3. Application generated by the Delphia Object Modeler

as a set comprehension in terms of GroupOfPerson, i.e. the
members of a group must be linked to that group. Actually,
schema PersonGroupRel2 is a pure translation of the arities
of the relation on the graphical model (1,1 to O,n).

__PersonGroupRel2
PersonExt; GroupExt
GroupOfPerson : PERSON + GROUP
Members : GROUP -» [F PERSON

dom GroupOfPerson = Person
ran GroupOfPerson C Group
Members = {g : ran GroupOfPerson e
g — {p : dom GroupOfPerson |
GroupOfPerson(p) = g e p}}

An additional constraint on this relation is that all mem-
bers of a group have the same telephone prefix (constraint
3). Itis introduced as a prefix function that returns the prefix
of a given telephone number. This function is total (every
telephone number has a prefix) and surjective (every prefix
corresponds to at least one telephone number).

[PREFIX]

| prefix : TEL — PREFIX

The constraint is added to the specification by first in-
cluding the elements of the PersonGroupRel2 schema and
then expressing the constraint.

__PersonGroupRel
PersonGroupRel2

Vpl,p2: Person |
GroupOfPerson(pl) = GroupOfPerson(p2) e
Vil :pl.tel e V2 : p2.tel o
prefix(tl) = prefix(t2)

In summary, the specification is structured at 3 levels:
class, extension, and relation. In more elaborate case stud-
ies, one or two additional levels appear in order to structure
relations into views (4th level) and to have a global view of
the whole data model (5th level). But these fourth and fifth
levels do not introduce additional conceptual difficulties. It
is also interesting to notice that constraints appear at each
level: constraints 1 and 2 appear at the class level, 4 and 5
at the extension level, 3 at the relation level.

5. Generating operation specifications

Commercial tools (in particular 4th Generation tools) ex-
ploit the graphical data model to automatically synthesize
a program. For example, Fig. 3 shows the user interface
of an application automatically generated by one such tool
(DeOM - Delphia Object Modeler [21]). The application
allows to edit and modify groups and persons, and to add
(ajouter) or remove (détruire) links between these classes.
In DeOM, a trigger mechanism provides support for the
constraints. These are expressed in an algorithmic way and
can be checked before or after modifications of the data.



The following operations can be synthesized from the
data model.

o at the class type level: modification of the attributes of
an object;

o at the extension level: creation, deletion of objects of
the extension;

o at the relation level: creation, deletion, modification of
links between objects.

One may also define “find” operations that retrieve an
instance on basis of a combination of its attributes. Such
operations do not modify the data structure and will not be
addressed in the rest of this paper. Only standard operations
are generated from the data model. In many cases, they
constitute a substantial part of the software. Application
specific operations require additional human guidance. For
example, they can be specified using other OMT models.

Operations on the class type. For each attribute of the
abstract entity, a modification operation corresponds to a
simple assignment to one of the attributes of the entity
which does not affect the other attributes. For example,
ChangeCardnb corresponds to the following instruction:

cardnb : = newcardnb
Itis expressed in Z as:
__ChangeCardnb

APERSON
newcardnb? : DIGIT8

lastname’ = lastname
firstname’ = firstname
tel’ = tel

cardnb’ = newcardnb?

In this specification, newcardnb? is an input parameter.
The last predicate constraints the new value of the cardnb
attribute (denoted by a ’) to be equal to this input param-
eter. The remaining predicates express that the other at-
tributes keep their initial values. The first line of the Z
schema (APERSON) expresses that the effects of this op-
eration are limited to changing an object of type PERSON.
Other schemas are needed to “promote” this operation to
the higher levels and to propagate the object modification to
the extension of the class and the relations.

Operations on the class extension. The class extension
is a set. Adding and removing an element are typical op-
erations on sets. For example, the AddPerson operation re-
ceives a PERSON as input (person?) and its specification
states that the new extension is the old one with this input

PERSON
lasthame GROUP
firstname
tel groupcode
cardnb groupname

Members

ChangelLastname 11 on ChangeGroupcode
ChangeFirstname ChangeGroupname
ChangeTel AddGroup
ChangeCardnb RemoveGroup
AddPerson

RemovePerson

Figure 4. A datamodel enriched with methods

parameter. This operation is defined at the level of the ex-
tension and also needs to be “promoted” at the level of the
relation.

__AddPerson
APersonExt
person? : PERSON

Person’ = Person U {person?}

Operations on Relations. Similarly, operations can be
defined to create, remove or modify links between objects.
The following specification can be synthesized to modify
the link between a person and his group.

__ChangeGroupofPerson
APersonGroupRel
=PersonExt; =GroupExt
person? : PERSON
group? : GROUP

GroupOfPerson’ =
GroupOfPerson @ {person? — group?}

A person and a group are passed as parameters, and the
operation changes the entry of person? in GroupOfPerson
to replace it with the new group. The second line of the
specification expresses that this operation may access but
does not modify (=) the extensions of persons and groups.

Violating the constraints Operations ChangeCardnb,
AddPerson, and ChangeGroupofPerson have been synthe-
sized by assigning new values to the attributes or by adding
or removing elements of a set. Applying this technique sys-
tematically to each attribute and each extension produces



the data model of Fig. 4 where methods have been added to
each class.

But this synthesis process does not take into account
the constraints expressed on the data model. Changing
the card number may violate constraints 1 (checksum) and
4 (key of person); constraint 4 may also be violated by
AddPerson; finally, constraint 3 (prefix) is likely to be vi-
olated by ChangeGroupofPerson (except if the new group
has the same telephone prefix than the previous one).

6. Computing pre-conditions

One way to evaluate the impact of operations on con-
straints is to compute their pre-condition, i.e. the condition
that must be satisfied initially to guarantee that the con-
straints are preserved at the end of the operation.

Identifying the pre-conditions of operations can help the
developer in several ways:

e Some operations have a true pre-condition. They may
be used without care.

e Some operations have a pre-condition that only refers
to input parameters. A test that the input parameter
meets the pre-condition provides a suitable guard for
the operation. For example, ChangeCardnb verifies
constraint 1 (checksum) if the newcardnb? parameter
meets this constraint.

o Other operations require to test a combination of input
parameters and state variables. It is the developer’s re-
sponsibility to evaluate whether it is worth to access
the state variables and perform the test or if some al-
ternate strategy must be used. For example, AddPerson
may violate the key constraint (4). To check this pre-
condition, the new key can be compared to all keys of
the extension. An alternate way to implement this is
to add a variable which records the highest key num-
ber, and to impose that the new key is greater than this
maximum. Of course, finding out this alternate imple-
mentation requires invention from the developer.

e Finally, some operations have an intricate pre-
condition which is very often (or always) false. ldenti-
fying this pre-condition helps the developer figure out
which operations don’t make sense. These operations
are not included in the final system or, if such opera-
tions are definitely needed, they may require to change
the data model and its constraints. For example, the
pre-condition of ChangeGroupofPerson requires that
the person keeps his telephone prefix. Since, itis rather
legitimate to allow group changes, this may mean that
some constraints should be weakened, for example by
allowing a person to have an empty set of telephone
numbers.

In other words, identifying pre-conditions not only helps

classify the operations generated automatically, but it helps
the developer understand his application and the resulting
data model. But the automatic generation of operations only
provides basic blocks to construct an application. Exploit-
ing these blocks is not always trivial and out of the scope
of this study. For example, the basic operations can be used
in a context specified by a dynamic diagram (Statechart) or
a use case. In that case, the identified precondition will be
used by the developer to check that it is satisfied in the call-
ing context of the operation.

6.1. Pre-conditions in Z

Unlike VDM or B, Z does not distinguisha pre-condition
in operation specifications. A single predicate links in-
put and output parameters, initial and final states. But Z
provides the pre Op operator to extract the weakest pre-
condition of an operation [9]. For operation Op which mod-
ifies the schema State and has i? and o! as parameters, the
pre-condition is defined as:

3 State’; o! : OUT e Op

This operator quantifies the final state and the output param-
eters of operation Op. The resulting predicate is a condition
on the initial state and the input parameters. When this con-
dition is verified, the existence of a final state and output
parameters that fulfill the specification is guaranteed.
Applying the pre operator to ChangeCardnb gives:

Fcardnb’ : Z; firstname’ : NAME;
lastname’ : NAME; tel’ : PTEL o
ChangeCardnb

By expanding the schema and removing the quantifier, this
predicate can be simplified into the following condition:

newcardnb? € Z

A 0 < newcardnb? A newcardnb? < 99999999

A newcardnb? div 100 mod 97 = newcardnb? mod 100
A firstname € NAME A lastname € NAME

Atel e FTEL

A-tel={}

A 0 < cardnb A cardnb < 99999999

A cardnb div 100 mod 97 = cardnb mod 100

In other words, the pre-condition expresses the type of the
input parameters and the state variables, associated to con-
straints 1 and 2.

6.2. ldentifying pre-conditions

One may assume that the initial state will satisfy the con-
straints stated in its schema, so the condition can be rewrit-
ten as:

VvV PERSON e pre ChangeCardnb



Moreover, it is also reasonable to assume that the input pa-
rameters will match their type:

V¥ PERSON; newcardnb? : DIGITS8 e pre ChangeCardnb
This formula simplifies into:

lastname € NAME A firstname € NAME

A tel € [FTEL

A —tel = {}

A 0 < cardnb A cardnb < 99999999

A cardnb div 100 mod 97 = cardnb mod 100

A 0 < newcardnb? A newcardnb? < 99999999
=
newcardnb? div 100 mod 97 = newcardnb? mod 100

which means that if the initial state satisfies types and con-
straints, and if the input parameters type-check, we only
have to ensure the consequent of the implication:

newcardnb? div 100 mod 97 = newcardnb? mod 100

which is the actual pre-condition of ChangeCardnb at the
class level. In summary, the pre-condition is obtained by
simplification of the formula:

V State,i7 : IN e pre Op
6.3. Automating this process

Computing and simplifying pre-conditions requires to
manipulate long formulas. This is obviously a tedious and
error-prone process. Therefore, tool support is mandatory
if one wants to be more rigorous than informal reason-
ing. The major theorem provers for Z are ICL Proofpower
[12], a commercial tool based on HOL, and Z/EVES [20].
Z/EVES was used to compute the above simplifications of
pre-conditions.

Z/EVES provides support for general theorem proving
for Z. It can be used to prove the consistency of specifica-
tions or refinements. It also supports schema manipulation
and can be used to compute pre-conditions. It features both
interactive and automatic mode, automatic mode being used
for simple theorems.

Actually, the simplifications of the last section were
performed with this prover. For example, the last pre-
condition theorem is computed automatically using the fol-
lowing commands:

try \forall PERSON, newcardnb? : DA T8 @
\ pre ChangeCar dnb;

prove by reduce;

The first command states the theorem to prove, the sec-
ond one invokes an automatic strategy where schema ex-
pansion is performed.

6.4. Validating pre-conditions

Unfortunately, this process of pre-condition calculation
and automatic simplification only works with simple exam-
ples. Often, the simplified formula is too long to be under-
stood. This is quite normal: Z/EVES is aimed at showing
that theorems are true, not at simplifying arbitrary formulas
in a form suitable to be read. Moreover, we don’t know of
any Z tool that performs such simplifications.

The calculation and simplification process is not the only
way to identify pre-conditions. One may also analyze the
specification and report all conditions that apply to the rel-
evant subset of the data model. But this second technique
has also its limits: some of the collected constraints are not
invalidated by the operation and are not involved in its pre-
condition.

Therefore, we adopted a pragmatic approach:

o First, the developer figures out what the pre-condition
is. Here, no systematic technique is proposed to carry
out this activity. Several techniques may help him:
calculating and simplifying (i.e. trying to use the ap-
proach of Sect. 6.3), browsing through the specifica-
tion (as suggested in the beginning of this section), or
also informal reasoning.

e Then, the theorem prover is used to formally verify that
the proposed pre-condition is actually a pre-condition
of the operation.

With this second approach, one tries to provethe follow-
ing theorem:

V State, i? : IN | precondition(State, i7) e pre Op

The precondition(State, i?) predicate is not necessarily the
weakest pre-condition of the operation, but any condition
that is strong enough to logically imply pre Op.

For ChangeCardnb, this results into the following
theorem, which is proved automatically by Z/EVES.

theorem ChangeCardnb_Pre
vV PERSON; newcardnb? : DIGITS |
newcardnb? div 100 mod 97 = newcardnb? mod 100 e
pre ChangeCardnb

Using this process, the following pre-condition theorem
is proposed for AddPerson. The proposed pre-condition
states that the new element is not the undefined element,
and that the key of the new element is not used in the
extension.

theorem AddPerson_Pre
V PersonExt; person? : PERSON |
(person? # undefperson)
A (V p : Person e person?.cardnb = p.cardnb) e
pre AddPerson



This condition is actually stronger than the weakest pre-
condition of the operation which also allows to add an ele-
ment that was already in the set. Here the condition on the
card number does no longer allow this possibility.

The first part of the pre-condition, which refers to the
undefined element was not identified as a constraint in Sect.
3. It results from the systematic translation and from the
automatic construction of some operations. Actually, an
undefined element is needed for “find” operations that fail.
Experimentally, this part of the pre-condition was found by
trying and failing to prove a simpler pre-condition.

Proving AddPerson_Pre is no longer an automatic pro-
cess. As stated earlier, the automatic strategies of Z/EVES
are only successful for simple theorems. Here, the proof
is more elaborate and involves about 15 proof steps. The
proof is structured as a case analysis where each case is not
longer than 5 or 6 steps. Figuring out this proof requires
some training with the prover. Hopefully many proofs are
very similar. For example, the proof of AddGroup_pre is
the same proof as AddPerson_pre. One may thus expect
that since operations are generated systematically, reuse of
proofs or of proof structure is often possible.

A more elaborate pre-condition is obtained by promot-
ing ChangeCardnb at the level of the class extension. This
promoted operation (ModifyCardnb) has the following
pre-condition theorem:

theorem ModifyCardnb_pre
V PersonExt; PERSON; person? : PERSON;
newcardnb? : DIGITS |
OPERSON = person?
A newcardnb? div 100 mod 97 = newcardnb? mod 100
A newcardnb? # undefperson.cardnb
A (Vp : Person e p.cardnb # newcardnb?)
e pre ModifyCardnb

ModifyCardnb has two input parameters: newcardnb?
and person? which designates the object whose card num-
ber will be changed. The first line of the pre-condition
is purely technical ({PERSON = person?): it expresses
that the person given as input is the one that is modified
by the promoted operation. The last three lines of the pre-
condition express constraints 1 and 4 and ensure that the re-
sulting object is not undefperson. The last two lines are ex-
pressed in terms of the input parameter (newcardnb?). The
condition newcardnb? # undefperson.cardnb is too strong
(nothing forbids that an element of Person has the same key
as undefperson). A weaker precondition would combine
newcardnb? with the attributes of person? to check that the
resulting element is not the undefined one.

Proving this theorem also requires an interactive proof
of about 20 steps. But the level of difficulty of the proof
is similar to the one of AddPerson and once again, there
are numerous similarities for all proofs corresponding to the
promotion of attributes modifications.

7. Conclusion
7.1. Summary

A development process has been proposed which starts
from a data model, produces a formal specification, gener-
ates operation code and specifications, and finally identifies
the pre-conditions of operations. The translation process
from the data model to Z has now been successfully ex-
perimented for several years. The generation of operation
specifications is still very basic and can be improved to take
into account the arity constraints of the relations as done in
[13]. This would probably avoid to generate some useless
operations that turn out to have a false pre-condition.

The main contribution of this paper is the definition of
an identification process for pre-conditions. First, we ex-
pected that a general-purpose theorem prover could help us
calculate and simplify these pre-conditions. This first at-
tempt failed and the process was refined into a first phase
where a pre-condition is “guessed” by the developer and a
second phase where the theorem prover is used to validate
this guess. “Guessing” precondition is not systematic and
requires interaction with the developer.

Finally, it turns out that identifying the pre-condition is
an iterative process. One starts with an empty pre-condition
and tries prove the theorem V State; i7 : IN e pre Op.
If the proof does not succeed, some insight is required
from the developer. Usually, a careful examination of the
“simplified” formula and some informal reasoning on the
formal specification help identify all or parts of the pre-
condition. These are injected in the theorem (V State; i7 :
IN | precondition(State, i?) e pre Op). And the process is
iterated until a complete pre-condition has been identified.

Validating pre-conditions, instead of calculating these,
allows to identify a pre-condition that is not the weakest.
It also allows to re-express the pre-condition in terms that
are easier to check, e.g. expressing it only in terms of in-
put parameters. But this flexibility has its limits, when the
pre-condition is too different from the statement of the con-
straints, interactive theorem proving is required.

Fig. 5 gives the number of proof steps needed for the
pre-condition theorems of the operations of Fig. 4. Level 1
operations which only modify the class are proved automat-
ically; level 2 operations may be easy to prove (3 proof steps
for Remove operations whose pre-conditions are true) or re-
quire case analysis. It turns out that the proofs of AddPerson
and AddGroup, RemovePerson and RemoveGroup are re-
spectively identical. We did not succeed to prove operations
of level 3 (like ChangeGroupofPerson, or the promotion of
level 2 operations). The problem lies with our small ex-
perience with the prover. Nevertheless, based on our first
attempts, we are convinced that the approach is still valid
and expect to find out other systematic proofs at this level.



Operation # steps | Operation # steps
ChangeLastname 1 | ChangeGroupcode 1
ChangeFirstname 1 | ChangeGroupname 1
ChangeTel 1
ChangeCardnb 1
AddPerson 15 | AddGroup 15
RemovePerson 3 | RemoveGroup 3
ModifyCardnb 20

Figure 5. Proof effort for each operation

7.2. The choice of a theorem prover

The process of identifying and validating pre-conditions
is not specific of a given theorem prover. But several re-
quirements exist for the prover:

Support for Z and the Z syntax. Using the Z syntax is
mandatory because the iterative identification process
involves both browsing the specification and proving.
Also, it is not reasonable for the developer to learn
languages for graphical specification, formal specifi-
cation, proof, and programming. Having the same lan-
guage for proofs and specification helps!

Support for automatic proofs. In the context of model-
based specifications, theorems are often long and ver-
bose but simple. This is the case here where pre-
conditions involve several schema definitions. Unfold-
ing these schemas in the original pre-condition theo-
rems leads to long formulas. But these are often sim-
ple to demonstrate because the identified pre-condition
that appears as an hypothesis is often the same or close
to the statement of some corresponding constraint.
Long but simple theorems often leads to long but sim-
ple proofs that can be handled automatically. Hence,
automatic mode is required for the approach.

Z/EVES meets both requirements. ICL ProofPower may
also meet these, but we don’t have any experience with
it. The limitations we have experimented with Z/EVES are
its learning curve for demonstrating arbitrary theorems and
performance when numerous schemas are involved by the
theorem. As far as the learning curve is concerned, we ex-
pect that proofs or proof structures for standard operations
can be reused (as shown by the proofs of level 2 operations).
This should be exploited to guide the learning process and
we intend to experiment it with undergraduate students. As
far as performance is concerned, problems arise for opera-
tions at the third level and higher (relations). Solutions to
this problem may lie in a better proof structure where au-
tomatic steps are performed after some preliminary work,
or in the definition of theorems and rewrite rules that are
specific to the approach. Also, experience with other meth-
ods (e.g. B) that involve theorem provers has shown that

Activity Mode Support tools

1 Edition of graphical | Interactive Standard OMT
specification tools, DeOM

2  Generation of exe- | Automatic Commercial
cutable application tools, DeOM

3 Production of a speci- | Mainly au- | tool to develop
fication skeleton tomatic

4 Filling in with formal | Interactive
annotations

5 Generation of opera- | Automatic | tool to develop
tion specifications

6 Identification of pre- | Interactive Z/EVES prover
conditions

Figure 6. Tool support

the way operations are stated may simplify their automatic
proof. Further investigations should thus be performed on
alternate expressions of the operation specifications.

7.3. Potential for tool support and automation

Fig. 6 summarizes the main phases of the development
process, their automatic/interactive character and their tool
support. The edition of the specification and generation of
an executable application (1,2) can take advantage of com-
mercial tools. The construction of the specification skeleton
(3) and the generation of operation specifications (5) can be
supported by automatic tools. Before undertaking the de-
velopment of these tools, we prefer to investigate the iden-
tification of pre-conditions. It also turned out that this the-
orem proving activity helps validate and improve the rules
we expect to use for automatic translation and generation.
The production of a formal specification also involves the
translation of constraints expressed in natural language (4).
This translation is a human process that can benefit from the
support of type-checking or proof tools. Finally, the identi-
fication of pre-conditions (6) is an interactive process.

In order to scale up from small examples to more signifi-
cant applications, the process should be automated as much
as possible. This would allow the developer to concentrate
on insightful specification activities (1, 4). This is why the
identification of pre-conditions must exploit the automatic
mode of the prover and try to reuse proof structure.

7.4. Towards robust and efficient applications

Integrating formal methods into an industrial develop-
ment process is not an easy task. It requires improvements
in either productivity or quality, preferably both. In order
to meet the productivity constraints, many phases of this
approach offer a potential for automation. Still the transla-
tion of natural language into Z and the identification of pre-



conditions have an inherent interactive character. Therefore,
the approach must show how it improves quality.

Actually, quality can be improved by taking into account
the information gathered in the pre-condition identification
process, to turn the executable prototype into a robust and
efficient implementation. Robustness is achieved by calling
operations within their pre-conditions. This guarantees that
the properties of the data model are preserved. Efficiency
is achieved because it is no longer needed to check that
the data meet the constraints. For example, in the DeOM
system, constraints are enforced by several demons that are
triggered at each transaction. If the new state does not meet
the constraints, the transaction is cancelled and the data are
restored into their initial state. This way of enforcing con-
straints is acceptable for a prototype or a first version of the
software but it requires additional computing resources. By
enforcing pre-conditions, transactions are never cancelled
and demons are no longer needed which improves the effi-
ciency of the application.

This work is still far from industrial transfer. It requires
to better integrate the object-oriented constructs in the spec-
ification as we try to do with OMT and Object-Z [4]. But
we hope that it gives clues on how the additional precision
of a formal specification can be exploited by adequate tools.
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