
Towards Computer-Aided Design of OCL Constraints

Y. Ledru, S. Dupuy, H. Fadil

LSR-IMAG,

 BP 72,

38402 St-Martin-d'Hères, France

{Yves.Ledru, Sophie.Dupuy}@imag.fr

Abstract

In UML2.0, significant efforts have been devoted towards a better definition of OCL. Still, the

adoption of the language by the software engineers remains a significant challenge. This paper

discusses the problem of helping UML analysts to express OCL constraints that link a pair of

attributes from different classes. This help consists of finding a navigation path between the classes,

and then choosing the best context to express the simplest constraint.

Y. Ledru, S. Dupuy, H. Fadil Towards Computer-Aided Design of OCL Constraints. In Proceedings

of CAISE’04 Workshops Vol. 1 - EMMSAD’04: Evaluating Modeling Methods for Systems Analysis

and Design, Riga, June 2004

This material is presented to ensure timely dissemi nation of scholarly and
technical work. Copyright and all rights therein ar e retained by authors or
by other copyright holders. All persons copying thi s information are
expected to adhere to the terms and constraints inv oked by each author's
copyright. In most cases, these works may not be re posted without the
explicit permission of the copyright holder.

©2004 Y. Ledru, S. Dupuy, H. Fadil.

Towards Computer-Aided Design of OCL Constraints

Yves Ledru, Sophie Dupuy-Chessa, and Hind Fadil

Laboratoires LSR et CLIPS - IMAG
B.P. 72 - F-38402 - Saint Martin d’Hères Cedex - France�

Yves.Ledru, Sophie.Dupuy, Hind.Fadil � @imag.fr

Abstract. In UML2.0, significant efforts have been devoted towards a better def-
inition of OCL. Still, the adoption of the language by the software engineers re-
mains a significant challenge. This paper discusses the problem of helping UML
analysts to express OCL constraints that link a pair of attributes from different
classes. This help consists of finding a navigation path between the classes, and
then choosing the best context to express the simplest constraint.

1 Introduction

OCL (Object Constraint Language [1]) is an important part of the UML [2]. It allows
analysts to define boolean expressions associated to classes or objects. The most com-
mon use of such expressions is the definition of invariant constraints on elements of
a class diagram and the specification of methods in terms of pre- and post-conditions.
These invariant constraints, pre- and post-conditionscomplement the information of the
class diagram and increase its expressiveness. In UML2.0 [3], significant efforts have
been devoted, amongst others in order to:

– better integrate OCL in the UML meta-model: an abstract syntax has been defined
using the same metamodelisation approach as for the other UML diagrams. As a
result, OCL concepts such as classes, methods, attributes or relations now clearly
refer to their counterparts in the UML diagrams.

– provide a formal semantics to OCL: a mathematical semantics has been defined
which makes it more precise and should allow the development of several tools
(e.g. compilers and animators) which take advantage of this semantics.

– facilitate the expression and the synchronisation of actions: new constructs have
been incorporated that allow the exchange of messages between objects.

These improvements should favour the use of OCL and make it a significant com-
petitor to formal object oriented specification languages such as JML[4]. Still, a dif-
ficulty remains, which is intrinsic to every textual formal modeling language: the ex-
pression of a constraint is not always a trivial task. In this paper, we discuss simple
techniques that should assist a UML analyst to express OCL constraints.

We focus on two difficult issues:

– navigation and quantification: many OCL constraints relate two attributes from dif-
ferent classes. The expression of the constraint requires the analyst to navigate
through the diagram in order to link the relevant objects. This includes the search
for a path between these objects, and if several paths exist, the selection of a path
which meets the intended semantics of the constraint.

– choice of the right ”context” to express the constraint: an OCL constraint is ex-
pressed in the ”context” of a class which constitutes the starting point for naviga-
tion. This class is usually the starting or the end point of the path that links the
classes involved in the constraint. Actually, any class of the path can be used as
the context of the OCL constraint. In this paper, we show that the choice of the
context can significantly simplify the expression of the constraint, amongst others
by diminishing the number of quantifiers involved in the constraint.

Unfortunately, such tools have their limits, the most significant one being that tools
can not figure out what is the exact semantics of a constraint. Therefore, they can only
assist the analyst who should be able to read the produced constraint and understand
what the tool helped him to express.

This idea of using tools to help in a modeling or programming process is not new. In
CAD/CAM tools (Computer Aided Design/Computer Aided Manufacturing), geomet-
rical modeling involves the definition of geometrical objects and of relations or con-
straints between these objects. For example, such tools allow the engineer to pick up a
circle and a line and to express the constraint that the line should be tangent to the circle.
Actually, once the analyst has selected these two objects, a pop-up menu appears and
proposes typical constraints that apply to a line and a circle: e.g. tangency or perpendic-
ularity. The engineers, who know these notions can then select the most appropriate one
for the item under construction. Similarly, commercial spreadsheets provide ”wizards”
to help you define a complex function for a given cell. Here the wizard usually starts
by prompting the user for the function he wants to define (e.g. standard deviation) and
then asks him to click on the cells that provide the argument(s) to the function.

This paper explores the design of similar tools to assist the definition of OCL con-
straints. First, Sect. 2 will present an example that illustrates our approach. The follow-
ing section will show how to find navigation paths in a class diagram. Then, we will
address the problem of choosing the best context in order to facilitate the constraint ex-
pression. Finally we will discuss the limitations and future investigations of this work.

2 Example

In order to illustrate this paper, let us consider the information system of an airline
company. The system manages the commercial offer of the company: it defines the
routes covered by the company, the schedules of the flights that correspond to these
routes, the price of the flights depending on the season of the year. The information
system also includes aspects linked to the management of airplanes in the company. It
records which airplane is intended to perform a given flight at a given date.

A simple version of the airline company database is described by the following
UML class diagram (Fig. 1):

– ”ROUTE” corresponds to the routes served by the company. They are described by
the departure and arrival airports and the distance between them.

– ”FLIGHT” represents the regular flights proposed for a given route. Several flights
may correspond to the same route. Each of them is characterized by its scheduled
departure and arrival times.

– ”FL INST” describes the flight instances. In this simple specification, we only
record the date of a given flight instance.

– ”AIRPLANE” models the airplanes ensuring flight instances. Each airplane has an
identification number and a range that defines the maximum distance it can fly.

– ”SEASON” defines the periods during which flights occur. So it has a start and an
end dates.

– The price of a flight is represented by an association attribute between ”FLIGHT”
and ”SEASON” as it is calculated according to the season and the flight.

FLIGHT

FlightNb : FLIGHTNB
depTime : TIME
artime : TIME

ROUTE

from : AIRPORT
to : AIRPORT
dist : DIST

FL_INST

date : DATE AIRPLANE

id : ID
range : DIST

SEASON

start : DATE
end : DATE

1

*

FlightOfFl_inst

Fl_instsOfFlight

FlightFl_instRel

*

0..1

InstancesOfPlane

PlaneOfInstance
InstancePlaneRel

*

1

FlightsOfRoute

RouteOfFlight

FlightRouteRel

*

1

InstancesOfSeason

SeasonOfInstance

InstanceSeasonRel

* *

FlightsOfSeason SeasonsOfFlightFlightSeasonRel

price : PRICE

Fig. 1. UML class diagram for an airplane database

This class diagram cannot express all the characteristics of the airline database. For
instance, the following constraints complete the model description:

– a flight instance must occur between the start and the end dates of its season;
– the range of an airplane must be greater than the distances of the routes that it flies;
– an airplane cannot fly two flight instances at the same time;
– the season of a flight instance is included in the seasons of the flight of this instance.

UML suggests to express these constraints in OCL [5]. For example, the first con-
straint that specifies that a flight instance occurs between the start and the end dates of
its season can be written:

context FL INST inv:
self.date

�
self.SeasonOfInstance.start and

self.date
�

self.SeasonOfInstance.end

This constraint is an invariant (keyword inv) expressed in the context of the class
”FL INST”. So self represents an object of ”FL INST” and the expression
”self.SeasonOfInstance” is the season of the object self obtained by navigating through
the association ”InstanceSeasonRel”. The first line of the constraint expresses that the
date of a flight instance must be greater than or equal to the start date of its season and
the second line expresses that the date of a flight instance must be less than or equal to
the end date of its season.

The expression of the second constraint is more complex. It involves the classes
”AIRPLANE” and ”ROUTE” that are not directly linked by an association. So we must
find a path between ”AIRPLANE” and ”ROUTE”. Here we choose to go through ”In-
stancePlaneRel”, ”FlightFl instRel”, and
”FlightRouteRel”. Once a path is identified, we have to choose among the classes of
the path the context of the constraint. According to the context chosen, the constraint
will be more or less easy to write and to understand. If we use AIRPLANE as the con-
text of this constraint, we get the following invariant:

context AIRPLANE inv:
self.InstancesOfPlane - �

forAll (IN � self.range
�

IN.FlightOfFl inst.RouteOfFlight.dist)

The first line of the constraint expresses that from �����	� we can get the set of flight
instances corresponding to the airplane. The second line means that for all flight in-
stances of this set, the distance of the route of the corresponding flight must be smaller
than or equal to the range of the airplane.

These two constraints give examples of the kind of constraints that we will consider
in this paper i.e. constraints on attributes of different classes. We will use them to illus-
trate the questions to answer in order to make the constraints on attributes as simple as
possible:

– what is the best navigation path between two classes whose attributes must be com-
pared in the constraint?

– what is the best context to easily express the constraint?

3 Finding Navigation Paths

Many OCL constraints relate different classes. So their expression requires to navigate
through the class diagram to link classes i.e. to find navigation paths between classes in
the diagram. We define a path as a set of contiguous associations which link the selected
classes. For example, a path which links AIRPLANE and ROUTE is:

�� �	
������������������������ � �	
������ � �
��������������� !���"��#$��%���&���#$�������'�)(

According to the number of paths, the work of the constraint writer will be different.

Existence of only one navigation path. If there is only one path between the classes,
the constraint writer has simply to check that this path semantically corresponds to the
link he wants between the classes.

Absence of navigation path. If there is no path between the classes, the constraint
cannot be expressed in the diagram. This often reveals a modelisation flaw. For example,
some association is missing in the diagram.

A similar problem may arise if there is a path between the classes but there are
too many restrictions on the navigability of the roles. In this case, the constraint writer
may have to add navigable links between the classes in order to be able to write his
constraint.

Existence of several navigation paths. If there are several paths between the classes, the
constraint writer has to identify paths that are semantically correct and choose one that
will facilitate the constraint expression. For instance, two paths can be found between
”FL INST” and ”SEASON” to express the constraint on the date of a flight instance (a
flight instance occurs between the start and the end dates of its season):

– the first one is direct through the association ”InstanceSeasonRel”;
– the second one goes through the associations ”FlightFl instRel” and

”FlightSeasonRel”. But it does not correspond to the relevant semantics for the
constraint. As a matter of fact, the constraint implies to find a single season which
corresponds to the flight instance (a flight instance must occur between the start
and the end dates of its season). But if the navigation path goes from ”FL INST”
to ”SEASON” through the roles ”FlightOfFl inst” and ”SeasonsOfFlight”, we find
several seasons corresponding to the seasons of the flight of the instance.

So here, there is only one semantically correct path between ”FL INST” and ”SEA-
SON”, the direct one through the association ”InstanceSeasonRel”. But this is not al-
ways the case. For example, let us modify the class diagram by introducing the concept
of ”FARE” instead of ”SEASON” (Fig. 2): unlike seasons, each fare is specific to one
flight. So ”price” becomes an attribute of ”FARE” and the role ”FlightOfFare” is mono-
valuated.

In this model, there are two ways to find the flight corresponding to a given flight
instance. The shortest path is to follow ”FlightOfFl inst”, but another path goes through
”FareOfInstance” and ”FlightOfFare”. As a result, this diagram also includes two paths
between ”AIRPLANE” and ”ROUTE” to express the second constraint. For example,
the second constraint of Sect. 2 (range of an airplane greater than the distance of the
corresponding routes) expressed in the context of AIRPLANE along this new path is:

context AIRPLANE inv:
self.InstancesOfPlane - �

forAll (IN � self.range
�

IN.FareOfInstance.FlightOfFare.RouteOfFlight.dist)

4 Choosing the Constraint Context

Even when there is only one semantically correct path, there remains several ways to
express a constraint. If we consider the constraint that specifies that a flight instance

FLIGHT

FlightNb : FLIGHTNB
depTime : TIME
artime : TIME

ROUTE

from : AIRPORT
to : AIRPORT
dist : DIST

FL_INST

date : DATE AIRPLANE

id : ID
range : DIST

FARE

start : DATE
end : DATE
price : PRICE

1

*

FlightOfFl_inst

Fl_instsOfFlight

FlightFl_InstRel

*

0..1

InstancesOfPlane

PlaneOfInstance
InstancePlaneRel

*

1

FlightsOfRoute

RouteOfFlight

FlightRouteRel

*

1

InstancesOfFare

FareOfInstance

InstanceFareRel

1 *

FlightOfFare FaresOfFlightFlightFareRel

Fig. 2. The airplane database with FARE

occurs between the start and the end dates of its season (constraint related to Fig. 1), the
previous section concludes that the direct path between ”FL INST” and ”SEASON” is
the only semantically correct path. Then the constraint can be written in two different
contexts: ”FL INST” and ”SEASON”.

context FL INST inv:
self.date

�
self.SeasonOfInstance.start and

self.date
�

self.SeasonOfInstance.end

context SEASON inv:
self.InstancesOfSeason - �

forAll (IN � IN.date
�

self.start and IN.date
�

self.end)

In this simple example with a direct path, the constraint is much simpler to express
in the context of ”FL INST”. This is due to the fact that in the first expression, the role
from ”FL INST” to ”SEASON” is monovaluated while the role from ”SEASON” to
”FL INST” is multivaluated. The multivaluation of a role implies the use of a forAll
expression which makes constraints more complex. So one criterion to evaluate a con-
straint complexity can be the number of multivaluated roles in the path: the lesser are
multivaluated roles in a path, the simpler will be the path.

Let us now consider the example of the range of an airplane (the range of an airplane
must be greater than the distances of the routes that it flies). In Fig. 1, there are two pos-
sible paths between ”AIRPLANE” and ”ROUTE”. But the one that goes through ”SEA-
SON” does not correspond to the intended semantics. The remaining path includes the
following associations: InstancePlaneRel, FlightFl instRel and FlightRouteRel. Classes
”AIRPLANE”, ”FL INST”, ”FLIGHT” and ”ROUTE” are potential contexts to state
the constraint. We end up with four equivalent expressions of the same constraint:

context AIRPLANE inv:
self.InstancesOfPlane - �

forAll (IN � self.range
�

IN.FlightOfFl inst.RouteOfFlight.dist) (C-1)

context FL INST inv:
self.PlaneOfInstance.range

�
self.FlightOfFl inst.RouteOfFlight.dist (C-2)

context FLIGHT inv:
self.Fl instsOfFlight - �

forAll (IN � IN.PlaneOfInstance.range
�

self.RouteOfFlight.dist) (C-3)

context ROUTE inv:
self.FlightsOfRoute - �

forAll (FL � FL.Fl instsOfFlight - �
forAll (IN � IN.PlaneOfInstance.range

�
self.dist)) (C-4)

Although these constraints are equivalent, they involve different numbers of quan-
tifiers, depending on the context. Actually, the number of quantifiers can be predicted
before writing the constraint. For each context, we can navigate towards the ends of the
path and count the number of multivaluated roles. This is summarized in the following
table.
Navigation (context in bold face) Number of

multivaluated roles
ROUTE (n) FLIGHT (n) FL INST (1) AIRPLANE 2
AIRPLANE (n) FL INST (1) FLIGHT (1) ROUTE 1
FLIGHT (n) FL INST (1) AIRPLANE /
FLIGHT (1) ROUTE 1
FL INST (1) FLIGHT (1) ROUTE /
FL INST (1) AIRPLANE 0

So according to this table, the best context to express the range constraint is the
context of ”FL INST”. By looking at the constraint expressed in OCL, it seems to be a
good choice as the understanding of constraint in the context of ”FL INST” is simplified
by the fact that there is no forAll expression.

But in the OCL constraints above, we can also note that constraints with shorter
navigation expressions are easier to read. So the length of the navigation expressions
can also be used as a criterion to compare constraints. For the example, this criterion
gives the following results:

Navigation (context in bold face) Maximum number of roles
ROUTE (n) FLIGHT (n) FL INST (1) AIRPLANE 3
AIRPLANE (n) FL INST (1) FLIGHT (1) ROUTE 3
FLIGHT (n) FL INST (1) AIRPLANE / 2
FLIGHT (1) ROUTE
FL INST (1) FLIGHT (1) ROUTE / 2
FL INST (1) AIRPLANE

According to this criterion, the simplest constraint expressions are written in the
contexts of ”FLIGHT” and ”FL INST”. If the importance of the length of navigation
path is not really highlighted by this example, this criterion can be a every good one
to compare contexts between classes of paths that are composed of different numbers
of classes. For instance, we apply the two criteria to the path between ”AIRPLANE”
and ”ROUTE” that go via ”FARE” in Fig. 2: ”InstancePlaneRel”, ”InstanceFareRel”,
”FlightFareRel”, and ”FlightRouteRel”. The path here includes one more class than the
previous one that does not go through ”FARE”.

Number of Maximum
multivaluated number of

roles roles
ROUTE (n) FLIGHT (n) FARE 3 4
(n) FL INST (1) AIRPLANE
AIRPLANE (n) FL INST (1) FARE 1 4
(1) FLIGHT (1) ROUTE
FLIGHT (n) FARE (n) FL INST (1) AIRPLANE / 2 3
FLIGHT (1) ROUTE
FL INST (1) FARE (1) FLIGHT (1) ROUTE / 0 3
FL INST (1) AIRPLANE
FARE (1) FLIGHT (1) ROUTE / 1 2
FARE (n) FL INST (1) AIRPLANE

According to this table, two contexts should be considered. ”FL INST” is the best
context to avoid the use of quantifiers, while ”FARE” leads to the shortest navigation
expressions. The resulting constraints are:

context FL INST inv:
self.PlaneOfInstance.range

�
self.FareOfInstance.FlightOfFare.RouteOfFlight.dist

context FARE inv:
self.InstancesOfFare - �

forAll (IN � IN.PlaneOfInstance.range
�

self.FlightOfFare.RouteOfFlight.dist)

Although we feel that none of this constraints is better than constraint (C-2) ex-
pressed on the shorter path, it is interesting to compare these constraints to the other
constraints from the shorter path. It is our personal feeling that these are probably sim-
pler than (C-4) which corresponds to a shorter path but involves two quantifiers.

Actually, it is up to the analyst to choose the constraint that appears the simplest,
but we believe that applying these criteria will help him reduce his choice to the most
interesting expressions.

5 Conclusion

This paper has discussed the problem of helping a user to express an OCL constraint
for a given class diagram. Starting from the selection of a pair of attributes by the user,
it is possible to find out all possible paths which link these attributes. For each of these

paths, the constraint may be expressed in a variety of contexts, corresponding to the
classes that appear on the paths. It is possible to automate these tasks (find the possible
paths, and then express the constraint in every context). A tool has been developed in
our laboratory [6], which takes a pair of attributes and a comparison operator and lists
the possible expressions of the constraints for all paths and all contexts. The user has
then to choose amongst the proposed constraints the one that: (a) corresponds to the
intended semantics of the paths if several paths exist between the attributes and (b)
appears the ”simplest” to understand.

Limits of this approach. The approach presented in this paper can only be applied to a
specific kind of constraint: it must link a pair of attributes from different classes. Sect. 2
has listed four constraints for Fig. 1. The last two constraints do not correspond to this
kind. One of them (”an airplane cannot fly two instances at the same time”) links the
same attributes for a pair of objects of the same class. The difficulty of this constraint
is to select the set of flight instances corresponding to an airplane and then to compare
these flight instances in a pairwise manner. The last one (”the season of a flight instance
is included in the seasons of the flight of this instance”) expresses the inclusion of a set
of objects in another one.

Perspectives. The major limit of the approach is the specific kind of constraints it ad-
dresses: linking a pair of attributes from different classes. Although we believe it en-
compasses a significant number of the constraints one would like to express, further
work is needed to establish a classification of possible constraints and then design spe-
cific helps for some of them.

Another perspective is the development of automated tools to support the approach.
The experience we got from our prototype tells us that such a support is feasible and
in particular that OCL is a flexible language that eases the automatic construction of
these constraints from class diagram information. An interesting challenge is to help
the analyst choose amongst the possible constraints that can be expressed automatically.
Sect. 4 has shown that syntactical criteria (shortest path, number of multivaluated roles)
can be used to sort these constraints. Although the idea of evaluating complexity on
the sole basis of syntactical issues may lead to numerous discussions [7], we believe
that it is an interesting starting point. Moreover, tool support can take advantage of
these criteria to help the analyst. Still, it is the analyst’s responsibility to understand the
constraints and pick up the right one.

OCL constraints can definitely help produce more precise and more expressive class
diagrams. Although the language has been designed specifically for class diagrams, the
expression of OCL constraints is still a complex task and slows down the adoption of
the language. We hope that this paper brings some light on the potential for automated
support that can be dedicated to constraint expression, and that such tools will contribute
to the adoption of the OCL language.

References

1. Warmer, J., Kleppe, A.: The Object Constraint Language (Second Edition) - Getting your
models ready for MDA. Addison-Wesley (2003)

2. Booch, G., Jacobson, I., Rumbaugh, J.: The Unified Modeling Language- User Guide.
Addison-Wesley (1998)

3. Group, O.M.: Unified Modeling Language 2.0 proposal. (2003)
4. Leavens, G., Baker, A., Ruby, C.: JML: A notation for detailed design. In Kilov, H., Rumpe,

B., Simmonds, I., eds.: Behavioral Specifications of Businesses and Systems. Kluwer Aca-
demic Publishers (1999) 175–188

5. Group, O.M.: Response to the UML 2.0 - OCL RfP (ad/2000-09-03. (2003) Revised submis-
sion, version 1.6 - OMG document ad/2003-01-07.

6. Fadil, H.: Intégration et génération de contraintes dans la spécification des systèmes
d’information. Rapport de DEA, Univ. Joseph Fourier, Grenoble, France (2003)

7. Edmonds, B.: Syntactic Measures of Complexity. PhD thesis, University of Manchester
(1999) http://bruce.edmonds.name/thesis/.

