
Experiences in Coverage Testing of a Java
Middleware

Mehdi Kessis
France Telecom R&D
MAPS/AMS laboratory, B.P.
98,
38243, Meylan, France
Mehdi.kessis@rd.franceteleco
m.com

Yves Ledru
Laboratoire LSR/IMAG
B.P. 72, 38402, St-Martin-
d'Hères,
France
Yves.Ledru@imag.fr

Gérard Vandome
Bull Open Software Labs
1, rue de province, Echirolles,
38000,
Grenoble, France
Gerard.Vandome@bull.net

Abstract

This paper addresses the issues of test coverage analysis of J2EE servers. These middleware are

nowadays at the core of the modern information technology’s landscape. They provide enterprise

applications with several non functional services such as security, persistence, transaction, messaging,

etc. In several cases, J2EE servers play a critical role when applied to e-business or banking

applications. Therefore, ensuring the quality of such software layers becomes an essential requirement.

However, in industrial context, professional middleware software are highly complicated and have a

huge size which makes their maintenance and quality management a big challenge for testers and

quality managers. The aim of this paper is to present our test and coverage analysis case study with

and the JOnAS J2EE server. The challenges of this work result from the size of the test suites and the

size of the tested middleware (200.000 lines of code (LOC) for JOnAS)

M. Kessis, Y. Ledru, and G. Vandome. Experiences in Coverage Testing of a Java
Middleware.
In Fifth Int. Workshop on Software Engineering and Middleware (SEM 2005), pages 39–45,
Lisbon, September 2005. ACM Press. ISBN:1-59593-204-4

This material is presented to ensure timely dissemi nation of scholarly and
technical work. Copyright and all rights therein ar e retained by authors or
by other copyright holders. All persons copying thi s information are
expected to adhere to the terms and constraints inv oked by each author's
copyright. In most cases, these works may not be re posted without the
explicit permission of the copyright holder.

"© ACM, 2005. This is the author's version of the work. It is posted here by permission

of ACM for your personal use. Not for redistribution. The definitive version was

published in PUBLICATION

Foundations of Software Engineering

Proceedings of the 5th international workshop on Software engineering and middleware table

Lisbon, Portugal

SESSION: Testing and instrumentation

Pages: 39 - 45

Year of Publication: 2005

ISBN:1-59593-204-4

http://doi.acm.org/10.1145/1108473.1108483 "

 39

Experiences in Coverage Testing of a Java Middleware
Mehdi Kessis

France Telecom R&D
MAPS/AMS laboratory, B.P. 98,

38243, Meylan, France
Mehdi.kessis@rd.francetelecom.com

Yves Ledru
Laboratoire LSR/IMAG

B.P. 72, 38402, St-Martin-d'Hères,
France

Yves.Ledru@imag.fr

Gérard Vandome
Bull Open Software Labs

1, rue de province, Echirolles, 38000,
Grenoble, France

Gerard.Vandome@bull.net

ABSTRACT
This paper addresses the issues of test coverage analysis of J2EE
[22] servers. These middleware are nowadays at the core of the
modern information technology’s landscape. They provide
enterprise applications with several non functional services such
as security, persistence, transaction, messaging, etc. In several
cases, J2EE servers play a critical role when applied to e-business
or banking applications. Therefore, ensuring the quality of such
software layers becomes an essential requirement. However, in
industrial context, professional middleware software are highly
complicated and have a huge size which makes their maintenance
and quality management a big challenge for testers and quality
managers. The aim of this paper is to present our test and
coverage analysis case study with and the JOnAS [23] J2EE
server. The challenges of this work result from the size of the test
suites and the size of the tested middleware (200.000 lines of code
(LOC) for JOnAS)

General Terms
Measurement, Documentation, Reliability, Verification.

Keywords
middleware, software engineering, J2EE, Code Coverage testing,
large scale software development, JOnAS

1. INTRODUCTION
Coverage is a quality insurance metric which determines how
thoroughly a test suite exercises a given program. It has been
known in the software engineering community since the 1960s. In
the early 1970s at IBM Rochester, Minnesota a hardware tool was
developed to measure the operating systems statement and branch
coverage [6]. At this time, coverage was considered complex to
measure and was done with hardware tools. Today, coverage
analyzers are usually user-friendly software. However, they are
still not widely used in software industry.
Many works studied the coverage analysis from a theoretical
point of view [5, 8, 9, 12, 15, 17, 20, 11]. However, rare are
empirical studies of real industrial cases on this subject [24, 4, 7].
These works are usually judged expensive and time consuming
[24]. Today, many works have proven the benefits of coverage
analysis in software quality improvement [15, 18, 19, 20]. Some
IBM studies studied the coverage of large scale applications in
real case studies [4, 7]. The former focused on the fault
distribution in large scale applications. The later proposed a
coverage analysis approach based on views to monitor large scale
application coverage.

The aim of this paper is to contribute to these works with a real
case study of a Java middleware. The tested middleware is
JOnAS, a J2EE server [23] of more than 200.000 LOC. The test
suite that we used in this study is used by the JOnAS team to
validate different versions of JOnAS server. It represents a real
case of an industrial test suite. This test suite counts more than
2500 tests. We aim through this paper to share our experience in
coverage analysis of such a large scale application with both
middleware and software engineering communities.
The rest of the paper is organized as follows. In the first part of
this paper we will study the code coverage feasibility in an
industrial context. Then we will study the code coverage of large
scale applications. After, we will introduce JOnAS J2EE server
and its two test suites. Then we will present our test results and
we will discuss them. Finally, in the last section we first interpret
these results, and then draw some conclusions about the use of
coverage in testing.

2. CODE COVERAGE
Usually, coverage analysis is used to provide quality manager
with information about the portions of their code or specification
which are played or not during tests. Two testing techniques are
generally used; black box and white box approaches [12]. A
similar distinction can be applied to coverage. In a black box
approach, coverage is related to the requirements expressed on the
application.
This paper addresses code coverage, which corresponds to a white
box approach where the internal mechanisms of the application
under test are seen by the tester. Code coverage identifies regions
of code that are not adequately tested. It answers the following
question: “how much of the code and which pieces of code were
exercised by played tests?”
 The answer to this question serves the following purposes: (a) to
stop testing when a sufficient amount of code has been exercised
[11] and (b) to monitor the quality of the tests.
 The code coverage analysis process is generally divided into
three tasks: code instrumentation, coverage data gathering, and
coverage analysis.

• Code instrumentation: consists of inserting some
additional code to compute coverage results.
Instrumentation can be done at the source level in
a separate pre-processing phase or at runtime by

 40

instrumenting byte code (e.g., with JVMPI 1 for
example).

• Coverage data gathering: consists of storing
coverage data collected during test runtime.

• Coverage data analysis: consists of analysing the
collected results and providing test strategy
recommendations in order to reduce, to feed or to
modify the relevant test suite.

In this section we will study the applicability of these three steps
in industrial context and with large applications.

2.1 CODE COVERAGE OF LARGE SCALE
APPLICATIONS
Despites many automation and integration efforts, code coverage
analysis practices are not very popular in the industrial world.
Their use is facing several challenges. First, market pressure
shortens the development cycle of software. As a result, less
importance and effort are dedicated to tests and quality insurance.
The second challenge is the cost of the coverage analysis activity.
In fact, code coverage appears as an additional expensive and non
productive, task that we ask from developers and testers. It does
not ensure immediate return on investment. Third, from a
technical point of view, the instrumentation task is often complex
to perform. Moreover, since the tests are applied to an
instrumented version of the software, test engineers worry about
the overhead introduced by the instrumentation, and the impact of
the instrumentation on the behaviour of the program. In some
cases, instrumentation even introduces new bugs. Most often,
instrumentation slows down the test execution, and this overhead
is in some cases unacceptable. Finally, analysing coverage data is
a complex activity and often misused [8].

2.2 CODE COVERAGE FEASIBILITY IN
INDUSTRIAL CONTEXT
Testing and coverage analysis of large applications is a particular
case of using coverage in industrial context. This task is generally
intimidating and time consuming task [7, 4]. To ensure sufficient
requirement or code coverage, huge test suites are often written.
In the case of application servers these tests are generally black
box (functional) tests to test specification (conformance) or
harness (robustness) tests which try to measure the server’s
performance. Measuring the scope of these tests is definitely
needed to improve their quality. Although these test suites are
constructed in a black box context, where their functional scope is
evaluated, code coverage analysis gives a complementary view.
This complementary view highlights those pieces of code that are
not directly concerned with the functional requirements. This
code can correspond to additional functionalities, defensive code
to ensure robustness, or even dead code.
The discovery of “dead pieces of code” is a significant benefit of
coverage analysers. These pieces of code are often forgotten
pieces of code (automatically generated by some code generation
tools, or deprecated pieces of code, etc) which are never executed.
Such dead code increases the complexity of software maintenance
and should be removed from the application.

1Java Profiling Interface URL:

http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html.

3. TESTING J2EE SERVERS
3.1 JONAS J2EE SERVER
JOnAS [22] is an open source implementation of the J2EE
platform specification. It provides enterprise applications that it
hosts with several non functional services (security, transaction,
EJB, Web, naming, messaging, Web services, communication,
etc). As Fig. 1 illustrates, applications are deployed in the server,
then accessed through web browser clients, thin java clients or
special client containers. Many services are external components
to JOnAS server: Web container (Tomcat2), Web services
implementation (Axis3), and JMS implementation (JORAM4).
The total JOnAS project is composed of 1.000.000 LOC if we
consider these external components. In this work we focused our
analysis only on 200.000 LOC : Enterprise Java Beans (EJB)
container, Client container, JMX, Web services, Resource
Adapters (RA), Naming service, Security service, JDBC service.
These correspond to the JOnAS source code regularly “built” by
the JOnAS development team.
JOnAS supports several communication protocols (RMI-IIOP,
JRRMP), the most popular database servers (Oracle, MySQL,
HSQLDB, PostGreSQL) and various operating systems
(Windows, Linux). This results in 16 possible configurations. To
test adequately the JOnAS server, we have to test all the
combinations of these parameters (Windows, Oracle, RMPI-IIOP,
Linux Oracle, RMPI-IIOP; Linux, JRMP, HSQLDB,etc).

Fig. 1. JOnAS architecture

4. TEST COVERAGE OF JONAS SERVER
4.1 TEST SUITES ORGANIZATION
To evaluate JonAS’s quality, we used a real world test suite
named Jonas Test Suite (JTS). This test suite is composed of three
types of tests: (a) functional tests, (b) structural tests and (c)
performance tests.

2Apache Jakarta Tomcat URL: http://jakarta.apache.org/tomcat/
3 Axis Web services URL:http://ws.apache.org/axis/
4Java (TM) Open Reliable Asynchronous MessagingURL:
http://joram.objectweb.org/

 41

JTS is developed by the JOnAS development team. It is
regularly augmented by contributors and by final users bug
reports. It is essentially a white box test suite. It counts 2.689
tests. These tests are evaluated for each combination of
communication protocol, database server and operating system.
Thus, the resulting size of the test suite is 43.024 tests.
Besides, JTS contains some integration tests and performance
tests. Integration tests are used to validate the integration of
external components (Tomcat, JORAM, Axis). Whereas,
performance tests aim to evaluate the application performance in
extreme conditions (e.g. high number of users over a long period
of time).

4.2 Choice of the adequate coverage analyzer
pport. These automated support tools are called coverage
analysers. A coverage analyser gathers data from an executing
application. Several coverage analysis tools are proposed as
commercial or open-source products. They propose to testers
various coverage metrics (statement coverage, loop coverage,
branch coverage, data flow coverage, etc). [9] lists about 101
coverage metrics. The most used metrics in industry are those
supported by coverage analyzers. The most powerful metric is
MC/DC [5, 14, 16]. It is used in aeronautic and critical systems
certification. Despites the richness of the coverage metrics state of
art, coverage analyzers for Java software do not offer a large
choice [10].
There used to be two major problems with coverage analyzers; (a)
instrumentation and (b) integration in the build project cycle [13].
The former problem is resolved with java technology tools.
Source and binary instrumentations can be easily fully automated.
To solve to the later problem, the new generation of coverage
analysers provides many facilities to integrate the coverage
analysis process in the automated build cycle. With such
functionalities instrumentation, gathering coverage data and
report generation are done in a batch mode. Besides, these tools
generate coverage reports automatically which shows, for
example, which probes were executed and how many times.
There are many commercial code coverage analyzers for Java
programs. The most popular ones are OptimizeIt5, Jprobe6,
DevPartnerStudio7 and Jcover8. Most of these tools support basic
coverage metrics; statement coverage, branch coverage, condition
coverage. None of them propose advanced metrics like MC/DC.
Besides, many open source and academic projects emerged such
as Quilt9, EMMA10, InsECT11, Hansel12, JVMDI Code Coverage
Analyzer13, Jcoverage/GPL14, and JBlanket15. They often try to

5 http://www.borland.com/optimizeit/code_coverage/
6 http:// www.quest.com/jprobe/
7 http:// www.compuware.com/products/devpartenr/studio.htm
8 http:// www.codework.com/JCover/product.html
9 http://quilt.sourceforge.net/
10 http://emma.sourceforge.net/
11 http://insectj.sourceforge.net/
12 http://hansel.sourceforge.net/
13 http://jvmdicover.sourceforge.net/
14 http://jcoverage.com/products/jcoverage-gpl.html

bring some new features that are not supported by commercial
tools. But most of them are still at experimentation stage and do
not scale up to handle large applications and huge test suites that
can run several hours or days (Tab.1).

Tab. 1 Open source Coverage analyzers state of art

Our coverage measurements were done with the Clover coverage
analyzer16. Clover is a low cost code coverage tool for Java. It is
freely licensed to Open Source and academic projects. The clover
analyzer gathers large coverage information from large scale
applications. Besides, it makes it possible to assemble coverage
files from multiple runs.
With Clover the two major problems faced with coverage
analyzers are resolved. First, it automates all coverage analysis
steps through the Ant tool17. The instrumentation problem is
automatically resolved by automating this process with Ant.
Second, Clover allows an easy integration of the coverage

15 http://csdl.ics.hawaii.edu/Tools/JBlanket/
16 Clover Coverage tool, URL:// http://www.cenqua.com/clover/
17Ant: the most popular build tool for java programs [URL: http://

ant.apache.org/]

Coverage report:
H : HTML
X : XML
G : GUI

Instrumentation approach:
B : Binary
S : Source code

Coverage
analyzer

L
in

e
co

ve
ra

ge

C
on

di
tio

n
co

ve
ra

ge

Fu
nc

tio
n

co
ve

ra
ge

A
nt

 i
nt

eg
ra

tio
n

ta
sk

s

R
ep

or
tin

g
ca

pa
bi

lit
ie

s

In
st

ru
m

en
ta

tio
n

ap
pr

oa
ch

O
th

er
 f

ea
tu

re
s

Quilt1
 H B/

S
Path coverage

EMMA H/X B Block
coverage

NoUnit H/X B -

InsECT G B profiling

Hansel ? S -
JVMDI

Analyser
 ? B -

GroboCode
Coverage

 ? ? H B -

Jcoverage H/X/
G B -

Jblanket ? B -

 42

analysis process with the JOnAS build process. In fact, the JOnAS
server build process is also based on the use of Ant. Thus, the
coverage, build and test processes can all be done in batch mode
(instrumentation, compilation, test, coverage gathering,
reporting).
Clover analyzer supports method, statement and condition
coverage. It computes a global coverage measure called “Total
Percent Coverage” (TPC) based on these metrics. The TPC is
calculated using this formula:

4.3 PUTTING IT INTO PRACTICE WITH
JONAS
he JOnAS build and test processes is fully automated and done in
batch mode. To integrate the coverage measurement process in
this cycle it was necessary to make it automated to minimize the
tester’s efforts. The Clover analyzer tasks are fully automated via
the Ant tool. The integration task of the coverage measure
processes with the build project and test processes was relatively
easy. (1) First the JOnAS sources are instrumented. (2) Then a
binary version of the instrumented code is generated. (3) Third,
tests are run. During test runtime, coverage data are gathered and
stored (4). Finally coverage reports are generated based on stored
coverage data (5). All coverage results were stored in XML files
and were accessed through GUI and web browser. Fig.2 illustrates
the coverage analysis process integration into the JOnAS build
project.

Fig. 2. Coverage process integrated into the build and test
processes

5. COVERAGE MEASUREMENTS
RESULTS
Following our measurements with JTS, we have noticed a 32.4 %
of TPC (31.7% of conditions coverage, 32.4 % of statement
coverage and 33.7% of methods coverage). Fig 3 illustrates the
Clover main report of the total coverage rate that we reached.

Fig. 3. Total Percent Coverage (TPC) for JTS

We then analysed the coverage distribution between JOnAS
packages. The primary analysis led us to notice that coverage
distribution is not balanced. Fig.4 illustrates the code coverage
distribution over JOnAS server services. With JTS two services
are covered at more than 50% (Web, Webservices), three at about
20 % (JDBC, security, naming) and only one package at less than
10% (Client container).

Fig. 4. Total Percent Coverage (TPC) for JTS
To understand the origin of these results we first started by
looking at condition coverage and line coverage. Tab.2 illustrates
the major results gathered following this analysis. According to
these results, we noticed that conditions and line coverage are
almost the same. We than adopted a second approach to analyse
our results.
We focused on the coverage distribution. We noticed due to this
second analysis that the coverage distribution is not balanced only
between packages. It is also none balanced inside packages
themselves.
Following to this constatation, we distinguished three sets of
covered regions. The first set (Fig. 5) groups services fully or
largely covered by JTS. Fig 4 illustrates the clover report for these
parts of JOnAS. Green/light-grey charts correspond to covered
packages and red/dark-grey ones correspond to non tested
packages.
This region of code constitutes the core of the JOnAS server. It is
essentially composed of core packages such as EJB, security or
Web services. It includes the EJB container, the security service
or the Web services.

TPC = (CT + CF + Cs+ MC) / (2 × TC + TS + TM)

CT: conditionals evaluated true at least once
CF: conditionals evaluated false at least once
CS: statements covered
MC: methods entered
TC: total number of conditionals
TS: total number of statements
TM: total number of methods

0

10

20

30

40

50

60

70

80

90

JDBC Web Security Naming Client
container

WS JonAS Packages

TPC

 43

Table 1.Line and condition coverage of JTS

The second part of the report was composed of packages that
were never tested. These packages are presented in Fig.6 with red
charts and 0 % of code coverage. The non covered packages are
composed of administration tool, EJB development assistance
tools, etc. These components are not supported by the J2EE
specification and are additional functionalities of JOnAS server.
 Amongst non covered packages and classes we found some
deprecated parts of code which were not and will never be used.
The third and the last part of the report contains packages
partially tested (Fig.7). The partially covered packages contain
non compliant code that means code which is not mentioned by
the J2EEs specification and was less extensively tested than the
core of the specification. They contain some JMX monitoring
code, or some debug mode code, or not tested exceptions.

6. DISCUSSION
The originality of this work consists on combining three test
techniques to evaluate middleware code complexity; (a) coverage
testing, (b) black box testing and (c) white box testing. With white
box testing we discovered that we do not cover some part of the
code. Due to this measure we noticed that client container is not
sufficiently evaluated with the JTS1. Only 2.27% of the code of
this package was tested. The second test technique we adopted
was black box technique. Black box tests does not cover non
compliant region of code. That means it does not concern parts of
code that are not mentioned in the J2EE specification. Finally,
the third technique (coverage testing) permitted to get a global
and detailed view about the scope of our tests. The Fig.8
illustrates the distribution map of the JOnAS test suite code
coverage.

Fig. 5. Fully covered JOnAS packages

Fig. 6. Non covered JOnAS packages

Fig. 7. Partially covered JOnAS packages

J2EE services C
on

di
tio

n
co

ve
ra

ge

L
in

e
co

ve
ra

ge

JDBC 25.93% 25.78%

Web 43.56% 42.95%

EJB 48.20% 48.65%

RA 27.71% 27.17%

Security 11.82% 11.76%

Naming 39.50% 37.13%

Client 0.43% 0.45%

JMX 27.93% 26.07%

WS 52.75% 52.76%

 44

Fig. 8. Coverage distribution between JOnAS services

This map illustrates the coverage distribution of tests over JOnAS
services. Each service is an implementation of a particular J2EE
technology specification. In practice we can apply a selective
coverage instrumentation and analysis to each of these services.
That means that we instrument and we analyse the coverage of
only the most critical packages and services. In our case these
packages could be EJB container or security services. The
selective instrumentation reduces the coverage testing effort
expenses and permits us to save time and interpretation effort.
Following our study we noticed that reaching 100% of code
coverage in large scale applications is nearly impossible even
with the simplest coverage metric (line coverage). In fact, in
practice, some parts of code concern debug mode, exception,
monitoring possibility, require supplementary test efforts. A
similar experience with testing java middleware called these areas
“simple cases” [3]. Generally, developers judge these parts not
worth to test. Testing such pieces of code can increase radically
the cost of the maintenance phase and it is not recommended to
adopt it as an initial goal.

7. RELATED WORKS
The principal learned lessons from [4] work are (a) there is a
strong correlation between complexity and the module’s size, (b)
there is a positive correlation between coarse and detailed
coverage and (c) the most important result is that approximatively
70 % of defects are coming from only 20 % of modules.

Asaf et al. [7] defines a coverage analysis approach based on
views to monitor large scale application coverage. This work
proposes a method for defining views onto the coverage data of
cross-product functional coverage models. This approach defines
coverage views based on selection, projection, and partition
operations. The proposed method allows users to focus on certain
aspects of the coverage data to extract relevant, useful
information. These two studies recommend adopting a selective
coverage analysis approach rather than a detailed one.
Cornett [21] studied the advantages and the weakness of use of
the most common coverage measures with Java, C and C++
programs. It recommended combining using weaker measures for
intermediate goal and stronger measures for release goal.
During our experiments, we noticed that in the case of
middleware or large and complicated applications, the
instrumentation is really a fastidious task. Installing correctly all
test mechanism and coverage is often very intimidating and
expensive. We think that combining advanced metrics and basics
ones [21] and adopting a selective instrumentation and coverage

measure politic [4, 7] would decrease radically the cost of this
activity.

8. ONCLUSION AND FUTURE WORK

We had presented in this paper an empirical study of the usability
of coverage analysis with a java middleware. Rare are papers that
study large and real applications tests or coverage. In our paper,
three test techniques were applied (black box/white box/ coverage
testing) to study the quality and the usability of these approaches
in an industrial context. The main lessons learned from our work
are:

(1) Today Coverage measure can be easily integrated in
automated build project process (Automated tools,
user friendly interfaces, ease of integration in
project’s build process, low overhead, etc);

(2) Analysis task needs to be automated especially with
large scale applications;

(3) Coverage measure of large scale applications can
highlight non-covered code in the program, and can
reveal the existing dead peace of code; In general
this code can be deprecated peaces of code or the
result of design mistakes;

(4) Coverage analyzer for Java programs are still not
enough mature. There is no coverage analyzer for
java programs that support advanced coverage
metrics ;

(5) Middleware are complex program and as there is a
strong correlation between code complexity and
bugs [4], we recommend combining different test
techniques to ensure a better quality.

After this study, we are still working on the improvement of the
JOnAS server and the quality of its tests. The first improvement
consists of eliminating the dead code from the JOnAS sources.
Due to our white box test approach some supplementary tests will
be written to cover not sufficiently tested regions. We learned
from our experience that fixing as intermediate goal 100% code
coverage, even if we use a basic coverage metrics, can impede
developpement and test productivity. Besides, the complexity
became more important when using advanced measures. [21]
Explains well how much coverage testing become expensive and
needs massive effort when testing Java, C and C++ programs with
advanced metrics. Tse et al. [1] presented a non successful
example of a coverage testing of a middleware with a full path
metric. Developing research activity about new metrics adapted to
the specific need of middleware testing could be a possible
solution for this problem [2].

9. ACKNOWLEDGMENTS
We would like to thank INRIA Rhônes Alpes and ObjectWeb
consortium, Bull Open Software Labs and the JOnAS team for
their valuable comments and help during this study.

10. REFERENCES
[1] T.H Tse, S. S. Yau, W.K. Chan and H. Lu, “Testing

Context-Sensitive Middleware-Based Software
Applications”, Proceedings of the 28th Annual
International Computer Software and Applications

 45

Conference (COMPSAC 2004), Los Alamitos,
California (2004).

[2] S. Ghosh and A.P. Mathur, “Certification of Distributed
Component Computing Middleware and Applications”,
Proceedings of the 4th CBSE workshop during ICSE 2001.

[3] B. Long and P. Strooper, “A Case Study in Testing
Distributed Systems”, Proceedings of the Third
International Symposium on Distributed Objects and
Applications, pp 20, 2001.

[4] Y. Woo Kim, “Efficient Use of Code Coverage in
Large-Scale Software Development”, IBM Center for
Advanced Studies Conference, Proceedings of the
2003 Conference of the Centre for Advanced Studies
on Collaborative research, Toronto, Ontario, Canada,
pp: 145 – 155, 2003.

[5] J. Joseph Chilenski and Steven P. Miller,
“Applicability of Modified Condition/Decision
Coverage to Software Testing”, Software Engineering
Journal, Vol.9, N°5, pp: 193 – 200, Sept 1994.

[6] P. Piwowarski, M. Ohba and J. Caruso, “Coverage
Measurement Experience During Function Test”,
Proceedings of the 15th International Conference on
Software Engineering, Baltimore, Maryland, United
States, pp: 287 – 301, 1993.

[7] S. Asaf, E. Marcus and A. Ziv, "Defining coverage
views to improve functional coverage analysis",
Proceedings of the 41st annual Conference on Design
automation, San Diego, CA, USA, pp: 41 – 44, 2004.

[8] B. Marick, “How to miss use Code Coverage”, 1997,
available on the Web at URL:
http://www.testing.com/writings/coverage.pdf.

[9] C. Kaner, “Software Negligence and Testing
Coverage”, Proceedings of STAR 96, 5th International
Conference on Software Testing, Analysis, and
Review, Software Quality Engineering, Orlando FL,
1996.

[10] C. Gaffney, C. Trefftz and P. Jorgensen, “Tools for
coverage testing: necessary but not sufficient”,
Journal of Computing Sciences in Colleges, Volume
20, Issue 1, pp: 27 – 33, Oct 2004.

[11] S.R. Dalal and C.L. Mallows, “When should one stop testing
software?”, J. Amer. Sratistical Assoc, Vol 83, 1988 Sept,
pp 872-879.

[12] G. J. Myers, “The Art of Software Testing”, Wiley,
John & Sons Edition, Mar 1979.

[13] B. Marick, J. Bach and C. Kaner, “A Manager’s Guide
to Evaluating Test Suites”, International Software
Quality week, San Francisco, CA, June, 2000.

[14] K. J. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L.
K. Rierson, “A Practical Tutorial on Modified
Condition/Decision Coverage”, Report NASA/TM-
2001-210876, NASA, USA, May 2001.

[15] Y.K. Malaiya and J. Denton, “Estimating Defect Density
Using Test Coverage”, Rapport Technique CS-98-104,
Colorado State University, 1998.

[16] K.J. Hayhurst, C.A. Dorsey, J. C. Knight, N.G.
Leveson and G.F. McCormick, “Streamlining
Software Aspects of Certification: Report on the
SSAC Survey”, Report NASA/TM-1999-209519, Aug
1999.

[17] B. Marick, “Experience with the Cost of Different
Coverage Goals for Testing”, 23rd Annual Pacific
Northwest Software Quality Conference (PNSQC),
Portland, Oregon, Oct 10-12, 2005.

[18] S. Brown, A. Mitchell and James F. Power, “A
Coverage Analysis of Java Benchmark Suites”, the
IASTED International Conference on Software
Engineering, Innsbruck, Austria, Feb 15 – 17, 2005.

[19] M.R. Lyu, J.R. Horgan and S. London, “A Coverage
Analysis Tool for the Effectiveness of Software Testing”,
IEEE Transactions on Reliability, Vol. 43, N° 4, Dec 1994.

[20] D.S. Rosenblum, E.J. Weyuker, “Using Coverage
Information to Predict the Cost-Effectiveness of Regression
Testing Strategies”, IEEE Transactions on Software
Engineering, Vol.23, N°3, March 1997.

[21] S. Cornett “Code Coverage Analysis“, available on the web
at: URL: http://www.bullseye.com/coverage.html.

[22] Java 2 Platform, Enterprise Edition (J2EETM) 1.4.
Specification, available on the web at: URL:
http://java.sun.com/j2ee/.

[23] JOnAS: JavaTM Open Application Server
documentation, available on the web at: URL:
http://jonas.objectweb.org/.

[24] T.J. Ostrand and E.J. Weyuker, “The distribution of
faults in a large industrial software system“,
International Symposium on Software Testing and
Analysis archive, Proceedings of the 2002 ACM
SIGSOFT International Symposium on Software
Testing and Analysis, Roma, Italy, pp: 55 – 64, 2002.

