Hierarchical Specification of Reactive Systems: a case study

Yves Ledru

Past affiliation :
Unité d’Informatique, Université Catholoque de Louvain, Belgium

Current affiliation :
Université Joseph Fourier (Grenoble 1) - LIG

BP 72, 38402 St-Martin-d’Heres, France
Yves.Ledru@imag.fr

Abstract

This paper discusses the development of the specification of reactive systems. A development
strategy is proposed which bases the specification of a reactive system on the description of
its environment. This approach has numerous advantages: easier validation of the
specification, availability of suitable modeling languages, and simulation of the environment
during the testing phase of the product.

The specification of the environment is expressed in the STATECHARTS formalism. It is
developed in a top-down manner. This top-down approach calls for the enhancement of the
STATECHARTS by a transition refinement construct.

The development of an actual case study, a data transfer problem, demonstrates the
methodological approach and shows the usefulness of this extension of the formalism. This
experiment also results in further development guidelines.

Y. Ledru. Hierarchical Specification of Reactive Systems : a case study. In Proceedings of
the CompEuro’90 Conference, pages 109-116. IEEE Computer Society Press, Tel-Aviv,
1990.

This material is presented to ensure timely dissemination of scholarly and
technical work. Copyright and all rights therein are retained by authors or
by other copyright holders. All persons copying this information are
expected to adhere to the terms and constraints invoked by each author's
copyright. In most cases, these works may not be reposted without the
explicit permission of the copyright holder.

©1990 IEEE. Personal use of this material is permitted. However, permission
to reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted component of this work in
other works must be obtained from the IEEE.



Proceedings of COMPEURO'90"1990 IEEE International Conference on Computer Systems

and Software Engineering"

Tel-Aviv, Israel, May 8-10, 1990.

IEEE C.5. Press

Hierarchical Specification of Reactive Systems: a case study

Yves Ledru®

Unité d'Tnformatique
Université Catholique de Louvain
Place Sainte-Barbe, 2
B-1348 Louvain-La-lleuve (Belgium)

Abstract
This paper discusses the development of the specili-
cation of reactive sysiems. A developinent strategy is
proposed which bases the specilicatlion of a reactive
systemn on the description of its environment. This
approach has numerous advantages: easier validation
of the specification, availability of suitable modeling
languages, and simulation of the environment during
the testing phase of the product.

The specification of the environment is expressed
in the STATECHARTS formalism. It is developed in a
top-down manner. This top-down approach calls for
the enhancement of the STATECHARTS by a transi-
tion refinement construct.

The development of an actual case study, a data
transfer problem, demonstrates the methodulogical
approach and shows the usefulness of this extension of
the formalism. This experiment also results in further
development guidelines,

1 Introduction

Many industrial systems are identified as “reactive”. Tlese terms
apply to systems whose primary role is to maintain some inter-
action with their environment [8]. Both industrial and academnic
communities carry on a lot of research in this area of software
engineering. These challenging researches cover the design of:

e new specification and implementation languages which take
into account the specific nature of reactive applications, i.e.
the interactions between reactive entities;

e development methods and formal frameworks which help to
establish a link between specilication and imnplementation;

* tools which support this development process.

The goal of this paper is to provide some hints on the develop-
ment of the specification of reactive systems. Many development

* Leibniz Project (This research has been funded in part by the Belgian
SPPS under grant RFO/Al/15).
This research was undertaken within the ESPRIT Project 510 Tool'Use.

CH2887-0/90/0000/0109$01.00 © 1990 IEEE

109

approaches (e.g. [11]) aim at a direct specification of the reac-
tive system under development. This description of an abstract
object is a non-trivial process and often results in premature de-
sign choices. Another approach, where Lhe environment of the
system under development plays a central role, is proposed here.
The specification of the environment is a modeling process which
appears to be easier to lead and then validate.

The Statecharts provide an adequate formalisin for this mod-
eling process. This formalism is enhanced here by a natural ex-
tension, the OR-decomposition of transitions, which is dual to
the OR-decomposition of states. This construct is mandatory
in a top-down modeling process where states and transitions are
described hierarchically.

This paper illustrates the approach by the development of the
specification of an actual case study: a data transler between a
computer and an musical synthesizer. Section 2 presents the case
study informally. Section 3 details the approach followed during
its development and proposes an extension to the STATECHARTS
specification language. Section 4 describes the specification pro-
cess. Section 5 discusses the problems left open in the case study.

2 Presentation of the case study

Figure 1 outlines the data transfer problem. A program must
be designed for the computer to achieve the transfer of data
stored in the musical synthesizer. A data transfer protocol is
imposed by the synthesizer manulacturer and implemented in
the synthesizer.

The transfer begins with a request packet from the computer
to the synthesizer. The synthesizer replies with a want to send
packet which must be acknowledged by the computer. The syn-
thesizer then sends several data packets and an end of transmis-
ston packet. All packets must be acknowledged by the computer.
If anything goes wrong, a reject packet may be issued by each sys-
tem. This packet terminates the transmission. An error packet
may also be sent. It must then be acknowledged by a reject
packet.

This application features thus two systems: the computer and
the synthesizer. Both entities are to be considered as reactive,
i.e. the problen is only concerned with their external behaviours.



s request
want to send 4
5, acknowledgement i
data g ]
- —
o acknowledgement ]
o 1
data = E
knowledgen rt Q
= ACKNOw e e O
end of transmission P
e acknowledgement

Figure 1: Outline of the data transfer

3 The development strategy

3.1 Specification of the environment

The development of a reactive system is made up of several
phases, one of which being the precise specification of the prob-
lem.

In [14], A. Pnueli distinguishes between the notions of re-
quirement specification and system specification. The require-
ment specification describes what is to be done while the system
specification explains how it is performed, i.e. it is a high-level
description of the implementation,

In any reactive problem, three viewpoints may be considered:

§ : the viewpoint of the reactive system under development:

E : the viewpoint of the environment of 5, i.e. the reactive
entity which will interact witl H

S+E : the global viewpoint which considers both reactive enti-
ties (S and E) from an external point of view.

In the data transfer problem, S correspends to the computer, £
groups the synthesizer and the wires which link it to the com-
puter.

For each viewpoint, a specification may be set up.

1. The behaviour of S must still be designed; its specification
is thus a requirement specification.

2. In most cases, £ already exists at the specification stage;
its behaviour is defined by its existing implementation. lts
specilication is thus a systern specilicalion and resulls from
a modeling process,

3. The global behaviour of S+£ is an abstract object which
sets several constraints on the behaviour of the reactive
entities it rules. Once again, it should be described in terms
of a requirement specification. In the data transfer case
study, 5+ F corresponds to the transmission protocol which
rules the data transfer.

The specification phase must end up wilh a specification of
the intended behaviour of §. By essence, a reactive systemn main-
tains stroug interactions with its envirotment. There is thus

110

a high degree of redundancy between these three specifications.
This redundancy makes it possible to design S from only one of
these three specifications.

The specification of the behaviour of § (1) corresponds to
the abstract description of a family of implementations which
fulfill the requirements. It corresponds to a typical requirement
specification and care must be taken not to restrict the space of
possible solutions by premature design choices which would turn
it into a system specification. In [11], L. Lamport proposes a
method for the development of the requirement specification of
S. In this method, £ is only seen through its interface with .

Specifying of the behaviour of £ (2), i.e. the direct environ-
ment of 5, is a modeling process where the behaviour of an actual
object is being described. As such, this specification does not re-
ally specify the behaviour of § but states how & will react to
events issued by 5. If we combine this specification with a goal
to achieve (G), we get a requirement specification of §:

In the contezt of E, G must be achieved.

To build the specification of the actual environment of the
system under development appears to be easier than the con-
struction of the specification of the system itsell. Indeed, in the
best case, this specification may already be available (e.g. pro-
vided with the environment). In most cases, it only describes an
existing behaviour and may be validated against it, using sim-
ulation techniques. If the environment does not yet exist, the
availability of some specification of its behaviour is a prerequi-
site to the development of the specification of S. Therefore, it
was decided to take this specification of E as the key element of
the specification of the system under development. In the data
transfer case study, the specification of the computer behaviour
is thus:

In the context of the system specification of the
synthesizer, design one of the possible computer be-
haviours which will interact with it and lead it to send
an “end of transmission”.

Indeed the receipt of end of tranamission is only issued after
a successful execution of the data transfer. The development
of the requirement specification is thus reduced to the one of a
system specification.

Another specification approach is to build the system from
the protocol specification (3). This approach is justified if the
protocol is clearly defined and if its specification is available.
Otherwise, the specification must be set up and validated from
an informal description of the protocol, which is more difficult
and error prone than the validation of E.

3.2 The specification of unexpected behaviours

The requirement specification of a reactive system must take into
account two fundamental behaviours of its environment. The
first behaviour is the one of a cooperative environment. This
should be viewed as the normal case, where every thing goes right.
When the environment behaves normally, the reactive system (5)
must achieve its goal (G), e.g. the computer must perform the
data transfer in this case study. The second possible behaviour
is the one where something goes wrong! In this context, the
reactive system (S) might not be able to achieve its goal but it



must ensure a minimal service which in many cases enforces a
safety property. In the data transfer case study, this corresponds
to the fact that the synthesizer may send err, rjct, or garbled
messages due to internal choices or due to the possible corruption
of messages sent to or received from the synthesizer.

The specilication of a reactive system is thus twofold:

1. if the environment conforms to a given “nermal” behaviour,
the system must {ulfill a maximal specificalion and perforin
useful activities;

2. in any case, it must satis[y a minimal specification.

During the design phase, efforts may be done in order to
lower the requirements on the environment behaviour in (1) and
to extend the coverage of the minimal specilication in (2), In
fault-tolerant applications, intermediate situations may be de-
fined between (1) and (2) to allow the “graceful degradation” of
the service performed by the reactive system.

In the data transfer case study, the second specification states
that:

If the behaviour of the environment does not con-
form to the “normal® behaviour, the system should
send a “rjct” message to ils environment.

Indeed, the rjct message is one way to close the data transfer
and reset the synthesizer into its Idle state.

3.3 Extension of the STATECHARTS
3.3.1 Specification languages for reactive systems

Many specification and implementation languages have been de-
signed [or reactive systems.

e Some result from a logical or declarative approach: [14] re-
views temporal logics and proposes a classification in termns
of their scope within the life-cycle.

e Otlier relate to algebraic frameworks (process calculi like
CCS [13] or ACP [1], the protocol specification language
LOTOS [15)).

¢ A more structural approach may also be followed (ES-
TEREL (2], Estelle [5], finite stale automata, Petri nets,
LUSTRE (3], STATECHARTS, ...).

The scope of these langnages within the soltware life-cycle is
rarely made explicit by the authors. This is essentially due to
the fact that most languages may be used at several abstraction
levels.

The STATECHARTS formalism [6] has been introduced by D.
Harel and A. Pnueli [8]. It is aimed at the description of complex
reactive systems. Its development is due to both industrial and
academic efforts (9] [10]. Being Lased on finite state automata
which make it an imperative specification language, the STATE-
CHARTS formalism is particularly well-suited for system specifi-
cation and for the modeling of existing systemns. Another asset
of Lthe STATECHARTS is their graphical appearance which has led
them to industrial acceptance, particularly when combined with
a suilable support environment. Finally, many academic works
aim to define a formal semantics for the language [10] [9] [4]. The
existence of such a formal semantics is a necessary condition to

111

allow a thorough integration of the language in a development
process. All these reasons have led to adopt the STATECHARTS
as specification language for the data Lransfer problem.

3.2.2 Decomposition of transitions

The STATRECHARTS formalism is based on finite state antomata
augmented by two constructs: the OR- and AND-decompositions
of states. A dual concept to the OR-decomposition of states is
the OR-decomposition of transitions. TFigure 2 illustrates this
new concept. All arrow palhs which leave state A end in state
D. These may be grouped into a global transition (arrow) which
links these states.

Figure 2: OR-decomposition of transitions

The diagram describing a transition refinement corresponds
to sequences of sub-transitions. The graphical notation assuci-
ated to this construct is made up of a rectangle followed by an
arrow with the name of the abstract transition. The rectan-
gle stores arrow paths starting at its left hand side and ending
at its right hand side. From a graphical poiut of view, just as
decomposed states look like other states, nothing distinguishes
a refined transition (e.g. arrow) [rom an elementary transition
(e.g. a). This changes the semantics of STATECHARTS transi-
tions which are no more elementary events but may now denole
substantial and non-instantaneous behaviours.

This natural extension to the STATECHARTS [orinalism re-
veals to be a useful construct. The additional structuring facil-
ity it provides is not only well-suited to describe macroscopical
transitions, but it is also very useful to only detail once a tran-
sition which appears at several places on the samne diagram. In
this particular case, unnamed states are used to prevent naming
conflicts (see figure 6). The case study described in section 4 also
shows that this construct is mandatory in a top-down develop-
menk process.

Although based on the same decomposition principle as stale
refinements, transition refinements diller from these in that:

« state refinements have a single default entry state while
transition refinements inay feature several eutry transitions
(e.g. a, ¢ and d for arrow);

» state refinements do not explicitly define exit states; in
transition refinements, exit transitions are precisely speci-

fied;

s the activities of a refined state may be interrupted by a
transition occurring at the upper state; in the case of re-



fined transition, this may only happen if the refined transi-
tion is itself included in a refined state which is interrupted.

3.4 Summary of the approach

The principles of the development approach may thus be stated
as follows:

¢ The specification of the reactive system is provided in terms
of the behaviour of its environment combined with a goal
to achieve.

* The specification of a reactive system is twofold: a normal
case describes the goal to achieve if the environment be-
haves normally, and a safety behaviour is specified [or all
other behaviours of the environment.

» The hierarchical structure of the STATECHARTS diagrams
leads to combine their use with a top-down approach.

4 Top-down specification

The guidelines of section 3.4 are now applied to describe the
system specification of the syntliesizer.

4.1 Top-level specification

The top-level view of the behaviour of the synthesizer distin-
guishes two states (figure 3):

* astate where the synthesizer is idle, i.e. does not interact
with its environment (ldle);

« a state where the synthesizer performs the data transfer
(Xfer).

Idle is the initial state (denoted by a special arrow). In this
first state, the system ignores any incoming message except the
request messages (rgst). Once it has received such a message, it
enters the Xfer state and performs the transmission. 1t will only
leave this state when it has received an acknowledgement and
the variable EOT is set to true. It may also leave this state if
it receives a message which corresponds to a transmission fAaw
(defect). The convention taken here expresses input events as
labels on the transitions and output events as send commands
(see figure 4).

@yn!h
Idle
defect
rqst
ack (EOT) v
Xfer
on enry:
EOT': ﬂf;’
N W

Figure 3: The top-level specification of the environment

112

The precedence rules of the STATECHARTS mnake it manda.
tory to use an auxiliary boolean variable in combination with the
ack transition. Otherwise, the system should leave the Xfer state
at the reception of the first ack. The EOT variable provides an
abstracted piece of information on the content of the Xfer state.
It is initially set to false on entry in the XJer state and denotes
that the system should eventually enter an internal state which
will turn the variable to true and enable to leave the Xfer stale
on reception of an ack message.

Inter-level transitions

The introduction of the auxiliary variable EOT prevents the use
of inter-level transitions, i.e. transitions which cross the border
of a rectangle representing a state. These transitions link states
located at different decomposition levels.

These inter-level transitions not only lower the clarity of
STATECHARTS specifications, they are also incompaltible with
a sound top-down development process. Indeed, they force the
simultanecus development of several decomposition levels.

The problem of inter-level transitions appears as one of the
major rationale for the design of the Argos language [12]. This
case study presents an alternate solution based solely on the
STATECHARTS primitives.

4.2 State refinement

The STATECHARTS allow the hierarchical decomposition of a
stale into sub-states. This feature is used here to refine Xfer
(figure 4).

(Xfer

Send_Euot

on enfry:
EUT:=rrue;

Ready

on entry:
send{wis)

on enfry:
send(data)

N )

Figure 4: The decomposition of Xfer

The transfer activity proceeds in three phases:
= initialization;

= actual transfer of data;

= termination.

At any moment of the transfer, defects may arise (loss of data,
reception of garbled messages, ...). These have already been
abstracted by the defect transition al the previous decomposition
level and are no more relevant al this level.

Xfer is thus decomposed into 3 sub-states corresponding Lo
the Lhree phases of the transmission:

* Ready is the default state where the transfer is started;



e Send_Data corresponds to the transmission of the data;
e Send_Eot ends the transmission.

The structure of the upper-level state (Xfer) has put a con-
straint on its sub-states: the existence ol an inlernal state where
the EOT variable will be verified and will enable the upper-level
to react to ack messages. The variable is set to false at the entry
point of the Xfer state and verified when the system isin the last
sub-state (Send_Eot), ;

When the system enters Send_Data, it issues data packets.
Since the number of data messages is not specified, non-determi-
nism is used to express that ack messages may lead either to
Send_Data or Send_Eot. As such, the specification does not state
that an end of transmission (eot) is eventually issued. An ad-
ditional fairness constraint on the selection of the ack transi-
tions should thus complement the specilication. This constraint
may be avoided by adding an implicit fairness assumption on the
choice of any transition of the diagrams.

4.3 Transition refinement

The current status of the specification does not need further state
refinements. Nevertheless, the specification is not sufficiently de-
tailed. For example, the defect transition corresponds to several
behaviours depending on the kind of transmission error encoun-
tered. Obviously, the precise description of this transition leads
to the definition of new states and transitions. If we stick to the
state decomposition constructs of the STATECHARTS, the intro-
duction of this supplementary information results in the modifi-
cation of the diagrams. Some intermediate states and transitions
will be added, other ones will be deleted. Such modifications do
not fit in a top-down development approach.

Another solution is to describe the transitions in another
formalism. This seems to be the solution supporied by the
STATEMATE" [7] environment.

The development strategy followed here leaves the diagrams
unchanged. Instead of multiplying the formalisms, the transition
decomposition construct is used to integrate the supplementary
information as separate diagrams in the same description frame-
work.

Figure 5 uses this new construct to describe the defect tran-
sition. There are several kinds of “defects”:

e the synthesizer receives a rjct packet which closes the trans-
mission;

e the synthesizer receives an error (err) message and issues
a rjct packet which closes the transinission;

e the synthesizer receives a garbled message, i.e. an unex-
pected or corrupted message; this case is not well defined
in the informal documentation of the synthesizer and will
be discussed later; at this level of the specification, we will
assumne that the synthesizer detects this message and reacts
to it with a rjct packet.

The defect transition is thus refined into two parallel con-
structs. The first one i3 a direct transition corresponding to the
reception of a reject (rjct) message. The second one involves an

* STATEMATE is a registrated trademark of i-Logix, Inc.

113

rjct z
» Error b
S defect
on enfry:
garbled sendfrjct)

Figure 5: The detomposition of defect

intermediate state (Error) where a rjct message is sent to the
computer alter the reception of an error message (err) or a gar-
bled message. The Error state is instantaneously left after the
emnission of the rjct message, due to the true transition which is
always satisfied.

The top-down decomposition proceeds with the decomposi-
tion of the elementary messages. Figure 6 gives tlhe decomposi-
tion of rgst. ack, err, and rjct are described in a simnilar way. rgst
is made up of a header (hdr), followed by a byte which denotes
the type of the message (rgst_code), and a tail. The intermediate
states are not named in this subdiagram.

hdr rqst_code tail | rgst

Figure 6: The decomposition of rgst

Finally, figure 7 details hdr as a sequence of 2 bytes. tail may
also be refined in a similar diagram.

P G

hdr_t \___/ hdr_2

hdr

Figure 7: The decoinposition of hdr

4.4 Description of the messages

As shown in figure 5, some messages mayv be both sent and re-
ceived by the synthesizer (e.g. rjct). The existence of different
techniques for the expression of input activities (transilions) and
oulput activities (send commands) may lead tv inconsistencies
between the descriptions. Indeed, the [ormat of messages such
as rjct is the same in both input and output activities. There-
fore, both inputs and output messages are described here in Lhe
framework of transition refinements.

When Lransition refinements are reduced to sequences of sub-
transitions, a notation shortcut, based on regular expressions, is
used which provides a textual representation of the refinemnent.
For example, figure 6 is now replaced by:

rqat 2 hdr; rqst_code; tail

Figure 8 completes the specification with the description of

the elementary messages. In this figure, a garbled message is



defined as the complement of a set of accepted messages.

rgst_code, wts code, ack_code, eol_code,
err_code, rjct_code, dat_code,

hdr_1, hdr 2, tadl 1, tail 2, tail 3
byte 1,..., byte 256

rqat = hdr; rqst_code; tasl

constants
Q.. 12T

wts £ hdr; wts_code; tail
ack 2 hdr; ack_code; tail
cot £ hdr; eot_code; tasl
err 2 hdr; err_code; tail
rjct 2 hdr; rjct_code; tail
hdr £ hdr_1; hdr 2
tail & tarl_1;tarl 2;tail 3
data & hdr; dat_code; tail 1; tail 2; data bytes; tail 3
data_bytes 2 byte_1; byte 2;...; byte 256; check_sum
check_sum = 128 — (S byte s)mod128)

=1

garbled 2 complement of({ack, rjct, err})

Figure 8: Description of the elementary messages

4.5 Towards a formal requirement specification

This section has presented the system specification of the envi-
ronment of the computer. Section 3.1 has explained how this
specification must be associated to a goal in order to specify the
behaviour of the computer. The goal was also stated: to lead
the synthesizer Lo send an end of transmission.

When this specification is used at later stages of the devel-
opment of the reactive system, efforts will be spent to relate
the implementation of the system to this specification. It is thus
useful to state this requirement specification more formally. This
should then look like:

Bsyntn A rqst A at(ldle) = O(ack A EOT)

which means that once a rgst has been sent in the Idle state,
it will eventually be followed by an ack with the EOT variable
true. Bsyns is a notation which expresses that the synthesizer
behaviour conforius Lo the STATECHARTS specification of Synth,
Le. the top-level state of the specification. Unfortunately, Lhe
formal framework which links this temporal logic formula Lo the
STATECHARTS is still to define.

The formal expression of the fairness constraint on the chojce
of ack transitions (section 4.2) may be formalised as:

at(Send_Data) A (O Oack) = Oat(Send_Eot)

Finally, the minimal requirement on the behaviour of the
computer is:

“Bsynen A rgst A at(ldle) = Orict

which states that a rjct must be eventually issued il the synthe-
sizer behaves improperly.

In fact, this specification is not implementable! It is depen-
dent on the fulfillment of a fairness constraint by the environ-
ment. Indeed, if the environment is in the Send Data atate, it

114

is impossible to decide from its past behaviour whether or not
it will eventually reach the Send_Eot state and conform to the
“normal” behaviour.

Therefore, the specification should be modified in such a way
that conformance of the behaviour of the actual environment to
the “normal” behaviour may always be decided within a finite
time. In this case study, this may be achieved by the definition
of an upper bound on the number of ack messages received in
the Send_Data state.

This results in a methodological guideline:

* the specification of a “normal” behaviour should avoid the
use of “eventualities” to allow a clear and easily stated
distinction between normal and unexpected behaviours.

5 Open problems

The system specification presented in section 4 specifies most of
the behaviour of the synthesizer and consequently the behaviour
of the system under development. Nevertheless, additional in-
formation should be associated to the specification:

« the behaviour of the synthesizer when confronted to unex-
pected inputs (5.1);

« the real-time characteristics of the synthesizer behaviour
(e.g. response time after reception of a message) (5.2);

* the target system description, i.e. Lhe characteristics of the
hardware of the computer on which the program must be
implemented (5.3).

5.1 Reaction to unexpected inputs

The system specification of the synthesizer does not necessarily
define the complete synthesizer behaviour when confronted to
unexpected inputs. For example, how does it react to an ack
message in the Jdle state? In other words, should the specifica-
tion exhaustively cover the behaviour of the environment?

A first answer to that question is related to the availability of
complete documentation on the synthesizer behaviour. Without
such information, exhaustive tests of the actual synthesizer be-
haviour are needed to complete the specification. Such a costly
activity must be motivated. In fact, the answer to the ques-
tion is that a specification should not be overloaded with useless
information. In the context of the requirement specification of
the computer program, the specification described in section 4
provides enough information to build and prove the computer
program.

A related problem is linked Lo the formal semantics of the
transitions. In section 4.1, the semantics of figure 3 was inter-
preted as: in the Idle state, the synthesizer ignores any incoming
input except rgst. If we stick to this interpretation, then the se-
mantics of the specification is completely determined. Another
interpretation, which is probably better-suited to the notion of
specification, is to allow to leave some aspects undefined in the
specification.

This discussion is particularly significant for the transition
refinement construct: to ignore an incoming message, it is nec-
essary to recognise it as “unexpected”. If an incomning message
begins with an acceptable sub-message and then differs {rom the



expected messages (e.g. rgst and ack both start with hdr), shall
the synthesizer ignore the incoming sub-message and be left in
an intermediate sub-state of the refined trausilion or backtrack
to its initial state? From this point of view, tlie second interpre-
tation appears as more appropriate: the system is left in a state
such that its subsequent behaviour is not specified.

5.2 Real-time characteristics

Another unspecified aspect of the environment is its real-time
characteristics. In this case study, real-time constraints exists
on the rate of output messages. For example, the 263 bytes of
data messages are emitted as one block and an adequate buffer
must be prepared at the receiver side. Unfortunately, the current
state of the art in the specification of real-time characteristics
does not allow yet a thorough formal coverage (specification and
proofs) of this aspect of the development of reactive systems.
This does not prevent the developer from describing informally
the real-time characteristics and the related problems, e.g. the
STATECHARTS allow to express some timing information.

Moreover, the specification of the minimal (sale) beliaviour
must take into account these potential problems. Here, the de-
sign of the reactive system must ensure Lhat eventually (after
some time-out) the rjct message will be issued. This requirement
reduces the set of acceptable behaviours of the environment by
putting some time constraints on the interactions. Indeed, typi-
cal misbehaviours include now:

e cases where the environment reacts too slowly (after the
time-out) to its inputs;

* cases where the environment reacts so quickly that its re-
sponse is missed by the computer.

There are thus minimal and maximal requirements on the
timing of the transitions in the enviromment behaviour.

5.3 Target system description

A complete requirement specification must also describe the rel-
evant characteristics of the target system, i.e. the ones that must
be taken into account to prove the correciness of the solution.
These may include:

 the semantics of the programming language in which the
reaclive program will be irnplemented;

e the specification of the external [unctions which drive Lhe
input/output devices of the compuler and will be called by
the reaclive program to interact with ils environment;

* the hardware characteristics of the computer (e.g. memory
space, real-time figures,...);

In fact this information describes the direct environment of
the reactive program which will rule the belhaviour of the tar-
get computer. This information is thus absolutely necessary to
establish the link between the program and the environment de-
scribed in section 4.

115

5.4 Additional guidelines

These open problems result thus inte additional guidelines:

e the specification of the environment must only describe its
relevant features to avoid overloading; ambiguities may be
left in this specification, provided enough information is
available to develop the system;

» due to the poor level of formality in the treatment of real-
time aspects, the specification should avoid as much as pos-
sible the use of timing constraints;

 the requirement specification should include the descrip-
tion of the target system.

6 Conclusions

This paper has shown how a requirement specification may be
derived from the system specification of its environment. This
approach has numerous advantages:

* in Lhe area of reactive systems, many languages (Petri nets,
STATECHARTS, ESTEREL, ...) are better suited to sys-
tem specification than to requirement specification; their
application to the description of the system under develop-
ment often results in premature design choices;

» the environment is often an existing object; descriptions
of the object may already be available and supplementary
information may be extracted from tests;

» if the specification is executable, it may be compared to the
actual behaviour of the object and may be used to simulate
the environment of the program at a testing stage;

 the requirement specification is preserved if the environ-
ment is re-implemented alterwards but still conforms to its
system specification.

The case study also experimented the adequacy of the STAT-
ECHARTS to support the top-down development of a system spec-
ification. It has shown that transition refinements provide a nat-
ural extension to the formalism which is necessary in a top-down
development approach. Other extensions to the STATECHARTS
have only been sketched and may be investigated [urther:

o the use of temporal logic formulae;

» the use of regular expressions to describe the transition
refinements; only of subset of these was used here as a
notation shortcut;

e the AND-decomposition of transitions.

The introduction of these extensions in the formalism must also
be motivated by methodological arguments.

This case study was conducted with the help of very simple
tools (text editor and graphical editor). When large scale appli-
cations are under development, dedicated tools, such as STATE-
MATE [7|, are needed to manage the large amount of diagrams
involved. The decomposition of transitions, which is very similar
to the OR-decomposition of stales, should be easy Lo integrale
in such environments.



A crucial aspect in the evolution of software engineering tech-
niques for reactive systems is the definition of development meth-
ods. The methodological guidelines stated in section 3.4 have
been demonstrated on the data transfer problem. Sections 4.5
and 5.4 have provided further guidelines. New ones should also
be derived from:

e feed-back from the next activities of Lhe development (de-
sign, implementation, integration, ...);

= the use of tools, especially in the validation of the specifi-
cation using simulation and animation techniques;

e the development of large-scale industrial specifications.

In any case, we believe that efforts spent to record, analyse, un-
derstand, and model these development activities are the driving
force which will eventually give rise to sound development meth-
ods,

Acknowledgements

Thanks to Pierre Collette, Daniel Dzierzgowski, Aubin Fanard,
Marc Lobelle, Pierre-Yves Schobbens, and Michel Sintzoff for
their contributions to the final version of this paper. Other
thanks are due to the anonymous referees of the COMPEURO
conference for their comments.

References

(1] J. A. Bergstra and J. W. Klop. Algebra of communicating
processes with abstraction. T'CS, 37(1), 1985.

[2] G. Berry and L. Cosserat. The ESTEREL synchronous pro-
gramming language and its mathematical semantics. In S.
Brookes and G. Winskel, editors, Seminar on Concurrency
(Lecture Notes in Computer Science 197), pages 389-449,

Springer Verlag, 1985.
3

—_—

P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. LUS-
TRE: A declarative language for programming synchronous
systems. In Proceedings of the 14th POPL, pages 178-188,
ACM, 1987.

[4] P. Collette and B. Villar. Intégration de formalismes
déclaratifs et tmpératifs pour la spécification de systémes
réactifs. Technical Report MEM 89 01, Université
Catholique de Louvain, Unité d’Informatique, 1989.

M. Diaz, J.-P. Ansart, J-P. Courtiat, P. Azema, and V.
Chari. The formal description technique Estelle - Results of
the ESPRIT/SEDOS project. North Holland, 1989,

D. Harel. STATECHARTS: a visual formalism for complex
systems. Science of Computer Programming, 8(3), 1987,

D. Harel, H. Lachover, A. Naamad, A. Pnueii, M. Politi, R.
Sherman, and A. Shtul-Trauring. STATEMATE: A Work-
ing Environment for the Development of Complex Reactive
Systems. In Proceedings of IUth International Conference
on Software Engineering (ICSE 10), pages 396-406, IEEE
Computer Society Press, 1988,

116

[8] D. Harel and A. Pnueli. On the development of reactive
systems. Technical Report CS85-02, The Weizman Institute
of Science, Rehovot, [srael, 1985,

o

i

D. Harel, A. Pnueli, J.P. Schmidt, and R. Sherman. On the
Formal Semantics of Statecharts. In Symposium on Logic
in Computer Science, pages 54-64, IEEE Computer Society
Press, 1987.

[10] C. Huizing, R. Gerth, and W. P:-de Roever. Modeling Stat-
echarts Behaviour in a Fully Abstract Way. In Proceed-
ings of CAAP'38, 18th Colloguium on Trees in Algebra and
Programming (LNCS 299), pages 271-294, Springer Verlag,
1988.

[11] L. Lamport. A simple approach to specifying concurrent
systems. Communications of the ACM, 32(1):32-45, 1989,

[12] F. Maraninchi. Argonaute: Graphical Description, Seman-
tics and Verification of Reactive Systems by Using a Process
Algebra. In Workshop on Automatic Verification of Finite
State Systems (Grenoble, june 1989), Springer Verlag, to

appear in 1990,

[13] R. Milner. A Calculua of Communicating Systems. Vol-
ume 92 of Lecture Notes in Computer Science, Springer Ver-
lag, 1980.

[14] A. Pnueli. Specification and development of reactive sys-
tems. In H.-J. Kugler, editor, IFIP 86, pages 845-858,
North-Holland, 1986.

[15] P.HJ. van Eijk, C.A. Vissers, and M. Diaz. The for-
mal description technique LOTOS - Results of the ES-

PRIT/SEDOS project. North Holland, 1989,



